Design of a Multi-epitope Vaccine Against Using Immunoinformatics Approach.

Int J Pept Res Ther

Department of Biology, Faculty of Science, Yazd University, Yazd, Iran.

Published: August 2021

is one of the most successful pathogens causing nosocomial infections and has significantly multidrug-resistant. So far, there are no certain treatments to protect against infection with , therefore an effective vaccine needed. The purpose of this study was to predict antigenic epitopes of protein for designing the vaccine using immunoinformatics analysis. protein is one of the most important factors in the resistance against the antibiotic . In this study, T and B-cell epitopes of protein were predicted and screened based on the antigenicity, toxicity, allergenicity features. The epitopes were linked by suitable linkers. Four different adjuvants were attached to the vaccine constructs which among them, vaccine construct 3 was chosen to predict the secondary and the 3D structure of the vaccine. The refinement process was performed to improve the quality of the 3D model structure; the validation process is performed using the Ramachandran plot and ProSA z-score. The designed vaccine's binding affinity to six various HLA molecules and TLR 2 and TLR4 were evaluated by molecular docking. Finally, in silico gene cloning was performed in the pET28a (+) vector. The findings suggest that the vaccine may be a promising vaccine to prevent infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397861PMC
http://dx.doi.org/10.1007/s10989-021-10262-4DOI Listing

Publication Analysis

Top Keywords

vaccine
8
vaccine immunoinformatics
8
epitopes protein
8
process performed
8
design multi-epitope
4
multi-epitope vaccine
4
immunoinformatics approach
4
approach successful
4
successful pathogens
4
pathogens causing
4

Similar Publications

Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.

View Article and Find Full Text PDF

Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity.

Vet Res

January 2025

Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has highlighted the need for more effective immunization programs, including in limited resource settings. This paper presents outcomes and lessons learnt from a COVID-19 vaccination campaign (VC), which used a tailored adaptive strategy to optimise vaccine uptake in the Boeny region of Madagascar.

Methods: Guided by the Dynamic Sustainability Framework (DSF), the VC implementation was regularly reviewed through multi-sectoral stakeholder feedback, key informant interviews, problem-solving meetings, and weekly monitoring of outcome indicators to identify and apply key adaptations.

View Article and Find Full Text PDF

Background: Hepatitis B virus (HBV) surface antigen (HBsAg) seroprevalence was high before the national vaccine policy was introduced in Taiwan, indicating significant HBV infection rates. The success of the HBV immunization program and other preventive measures likely led to decreased HBsAg prevalence among pregnant women. This study reports on the HBV seroprevalence among pregnant women in Taiwan from 2016 to 2021, including those potentially affected by the universal hepatitis B vaccination at birth.

View Article and Find Full Text PDF

Engineering Saccharomyces cerevisiae for medical applications.

Microb Cell Fact

January 2025

Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.

Background: During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid.

Main Text: In this review, we scrutinize the main applications of engineered S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!