High porosity and surface areas of ordered mesoporous materials provide substantial capacity for loading of guest molecules and the well-defined morphology of such materials can control their transport for controlled release. Here, the loading and release of mitoxantrone from unmodified ordered mesoporous carbon films is monitored using UV/Vis spectroscopy. Organic-organic self-assembly of Pluronic F127 with phenolic resin leads to interconnected elliptical pores (≈2 nm) in the film after carbonization. Interestingly, the total loading (2.6 ± 0.4 μg/cm) and release of mitoxantrone is independent of film thickness (50-400 nm), suggesting diffusion limitations in pore filling. With alternative template, the pore size increases to ≈5 nm and the mitoxantrone loading increases to 3.5 ± 0.9 μg/cm, but the loading still remains thickness independent. Using phosphate buffered saline at 37 °C, less than 60 % of the loaded mitoxantrone is readily released from the mesoporous carbon films over a two-week period. The release profile includes an initial burst with a modest fraction (< 20 %) of the loaded drug released within the first day, followed by a near linear release over the subsequent 5-9 days. Interestingly, the smaller pores (ca. 2 nm) release nearly 50 % more mitoxantrone over 2 weeks than the larger pores (ca. 5 nm), despite the lower initial loading. These results illustrate potential limitations as well as opportunities for the use of highly hydrophobic porous materials for the controlled release of hydrophobic biologically active compounds as drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412141 | PMC |
http://dx.doi.org/10.1016/j.micromeso.2012.05.003 | DOI Listing |
J Hazard Mater
January 2025
Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China; Zhejiang-French Digital Monitoring Laboratory for Aquatic Resources and Environment, Huzhou University, Huzhou 313000, PR China. Electronic address:
Mercury (II) ion (Hg) as highly toxic heavy metal may be accumulated in aquatic ecosystems and animals species so as to enter human body to conduct health harm. To ensure the safety of fishes food, hence, it is of great interest to evaluate the Hg levels in different kinds of fishes as well as Hg removal in aquaculture tailwater. In this article, a selective colormetric detection and efficient removal strategy has been developed for Hg ions by the controlled supermolecular self-assembly of melamine (MA)-platinum (Pt) composites onto mesoporous FeO carriers.
View Article and Find Full Text PDFSmall
January 2025
Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China.
Thermal management is a key link in improving energy utilization and preparing insulation materials with excellent performance is the core technological issue. Complex and irregular pore structures of insulation materials hinder the exploration of structure-property relationships and the further promotion of material performance. Ordered mesoporous silica (OMS) is a kind of porous material with ordered frameworks.
View Article and Find Full Text PDFSmall
January 2025
Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China.
Although carbon-based supercapacitors (SCs) hold the advantages of high-power and large-current characteristics, they are difficult to realize ultrahigh-power density (> 200 kW kg) and maintain almost constant energy density at ultrahigh power. This limitation is mainly due to the difficulty in balancing the structural order related to the electrical conductivity of carbon materials and the structural disorder related to the pore structure. Herein, we design a novel super-structured tubular carbon (SSTC) with a crosslinked porous conductive network to solve the structure order-disorder tradeoff effect in carbon materials.
View Article and Find Full Text PDFAnal Methods
January 2025
CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, 364 002, India.
In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy.
This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!