Optimizing the performance of multiline-scanning confocal microscopy.

J Phys D Appl Phys

CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA.

Published: March 2020

Line-scanning confocal microscopy provides high imaging speed and moderate optical sectioning strength, which makes it a useful tool for imaging various biospecimens ranging from living cells to fixed tissues. Conventional line-scanning systems have only used a single excitation line and slit, and thus have not fully exploited benefits of parallelization. Here we investigate the optical performance of multi-line scanning confocal microscopy (mLS) by employing a digital micro-mirror that provides programmable patterns of the illumination beam and the detection slit. Through experimental results and optical simulations, we assess the depth discrimination of mLS under different optical parameters and compare it with multi-point systems such as scanning disk confocal microscopy (SDCM). Under the same illumination duty cycle, we find that mLS has better optical sectioning than SDCM at a high degree of parallelization. The optimized mLS provides a low photobleaching rate and video-rate imaging while its optical sectioning is similar to single line-scanning confocal microscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412417PMC
http://dx.doi.org/10.1088/1361-6463/abc84bDOI Listing

Publication Analysis

Top Keywords

confocal microscopy
20
optical sectioning
12
line-scanning confocal
8
optical
6
confocal
5
microscopy
5
optimizing performance
4
performance multiline-scanning
4
multiline-scanning confocal
4
microscopy line-scanning
4

Similar Publications

Catheter-associated urinary tract infections (CAUTIs), often caused by biofilm-forming Staphylococcus aureus, present significant clinical challenges. Skt35, a dioxopiperidinamide derivative of cinnamic acid, was investigated for its potential antibacterial and antibiofilm activities against S. aureus biofilms.

View Article and Find Full Text PDF

DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1), in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.

View Article and Find Full Text PDF

Glycation-mediated pea protein isolate-curcumin conjugates for uniform walnut oil dispersion: enhancing oxidative stability and shelf life.

J Sci Food Agric

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.

Background: Traditional methods for fabricating protein-polyphenol conjugates have not preserved the structural and functional integrity essential for the food industry effectively. This research introduces an advanced encapsulation methodology designed to overcome these limitations, with the potential to enhance the stability of edible oil matrices significantly, leading to improved preservation techniques and extended shelf life.

Results: Glycated pea protein isolate-curcumin conjugates (gPPI-CUR) were developed, demonstrating a marked improvement in the oxidative stability of walnut oil (WO), a proxy for edible oil matrices.

View Article and Find Full Text PDF

Confocal Raman Microscopy with Adaptive Optics.

ACS Photonics

January 2025

Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.

Confocal Raman microscopy, a highly specific and label-free technique for the microscale study of thick samples, often presents difficulties due to weak Raman signals. Inhomogeneous samples introduce wavefront aberrations that further reduce these signals, requiring even longer acquisition times. In this study, we introduce Adaptive Optics to confocal Raman microscopy for the first time to counteract such aberrations, significantly increasing the Raman signal and image quality.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related neurodegenerative pathology. Brain-derived extracellular vesicles (EVs) have been demonstrated to be implicated in AD pathogenesis by facilitating the propagation of Tau, amyloid-β and inflammatory cytokines. However, the impact of peripheral EVs (pEVs) in AD pathogenesis remains poorly investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!