A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of a deep learning model to screen hypokalemia from electrocardiogram in emergency patients. | LitMetric

Development and validation of a deep learning model to screen hypokalemia from electrocardiogram in emergency patients.

Chin Med J (Engl)

Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University School of Medicine, Nanchang, Jiangxi 330006, China.

Published: September 2021

Background: A deep learning model (DLM) that enables non-invasive hypokalemia screening from an electrocardiogram (ECG) may improve the detection of this life-threatening condition. This study aimed to develop and evaluate the performance of a DLM for the detection of hypokalemia from the ECGs of emergency patients.

Methods: We used a total of 9908 ECG data from emergency patients who were admitted at the Second Affiliated Hospital of Nanchang University, Jiangxi, China, from September 2017 to October 2020. The DLM was trained using 12 ECG leads (lead I, II, III, aVR, aVL, aVF, and V1-6) to detect patients with serum potassium concentrations <3.5 mmol/L and was validated using retrospective data from the Jiangling branch of the Second Affiliated Hospital of Nanchang University. The blood draw was completed within 10 min before and after the ECG examination, and there was no new or ongoing infusion during this period.

Results: We used 6904 ECGs and 1726 ECGs as development and internal validation data sets, respectively. In addition, 1278 ECGs from the Jiangling branch of the Second Affiliated Hospital of Nanchang University were used as external validation data sets. Using 12 ECG leads (leads I, II, III, aVR, aVL, aVF, and V1-6), the area under the receiver operating characteristic curve (AUC) of the DLM was 0.80 (95% confidence interval [CI]: 0.77-0.82) for the internal validation data set. Using an optimal operating point yielded a sensitivity of 71.4% and a specificity of 77.1%. Using the same 12 ECG leads, the external validation data set resulted in an AUC for the DLM of 0.77 (95% CI: 0.75-0.79). Using an optimal operating point yielded a sensitivity of 70.0% and a specificity of 69.1%.

Conclusions: In this study, using 12 ECG leads, a DLM detected hypokalemia in emergency patients with an AUC of 0.77 to 0.80. Artificial intelligence could be used to analyze an ECG to quickly screen for hypokalemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509898PMC
http://dx.doi.org/10.1097/CM9.0000000000001650DOI Listing

Publication Analysis

Top Keywords

deep learning
8
learning model
8
emergency patients
8
development validation
4
validation deep
4
model screen
4
screen hypokalemia
4
hypokalemia electrocardiogram
4
electrocardiogram emergency
4
patients background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!