Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the current climate change scenario, understanding crops' physiological performance under water shortage is crucial to overcome drought periods. Although the implication of leaf water relations maintaining leaf turgor and stomatal functioning under water deprivation has been suggested, the relationships between photosynthesis and osmotic and elastic adjustments remain misunderstood. Similarly, only few studies in dicotyledonous analysed how changes in cell wall composition affected photosynthesis and leaf water relations under drought. To induce modifications in photosynthesis, leaf water relations and cell wall composition, Hordeum vulgare and Triticum aestivum were subjected to different water regimes: control (CL, full irrigation), moderate and severe water deficit stress (Mod WS and Sev WS, respectively). Water shortage decreased photosynthesis mainly due to stomatal conductance (g) declines, being accompanied by reduced osmotic potential at full turgor (π) and increased bulk modulus of elasticity (ε). Whereas both species enhanced pectins when intensifying water deprivation, species-dependent adjustments occurred for cellulose and hemicelluloses. From these results, we showed that π and ε influenced photosynthesis, particularly, g. Furthermore, the (Cellulose+Hemicelluloses)/Pectins ratio determined ε and mesophyll conductance (g) in grasses, presenting the lowest pectins content within angiosperms. Thus, we highlight the relevance of cell wall composition regulating grasses physiology during drought acclimation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2021.111015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!