Molecular reprogramming in grapevine woody tissues at bud burst.

Plant Sci

Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Engineering, University of Minho, Braga, Portugal.

Published: October 2021

Perennial woody plants undergo a period of dormancy from the beginning of autumn until the end of spring. Whereas the molecular and physiological events that characterize dormancy release of buds have been described in detail, those occurring in woody tissues underneath the buds are mostly unknown. To bridge this gap, the mRNA populations of cane segments located underneath the bud were analyzed at bud dormancy (E-L 1) and at bud burst (E-L 4). They revealed an important reprogramming of gene expression suggesting that cell division, cell wall metabolism and the mobilization of sugars are the main metabolic and cellular events occurring in cane woody tissues at bud burst. Also, the upregulation of several genes of sugar metabolism, encoding starch- and sucrose-degrading enzymes and sugar transporters, correlates with the decrease in starch and soluble sugars in woody tissues concomitant with increased sucrose synthase and α-amylolytic biochemical activities. The latter is likely due to the VviAMY2 gene that encodes a functional α-amylase as observed after its heterologous expression in yeast. Taken together, these results are consistent with starch and sugar mobilization in canes being primarily involved in grapevine secondary growth initiation and supporting the growth of the emerging bud.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2021.110984DOI Listing

Publication Analysis

Top Keywords

woody tissues
16
bud burst
12
tissues bud
8
bud
6
woody
5
molecular reprogramming
4
reprogramming grapevine
4
grapevine woody
4
tissues
4
burst perennial
4

Similar Publications

First report of privet leaf blotch-associated virus (PLBaV) infecting lilac ( L.) in France.

Plant Dis

January 2025

INRA Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, CS20032, Villenave d'Ornon , France, 33882 cedex;

Privet leaf blotch-associated virus (PLBaV) is an Idaeovirus discovered by high-throughput sequencing (HTS) in privet (Ligustrum japonicum L) in southern Italy in 2017 (Navarro et al., 2017). In privet, it causes a leaf blotch disease with yellowish or whitish chlorotic blotches or ringspots.

View Article and Find Full Text PDF

Xylosandrus ambrosia beetles preference of nursery tree species for attacks and colonization under water stress.

J Insect Sci

January 2025

Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA.

The role of flood and drought stress on Xylosandrus ambrosia beetle attacks and colonization in nursery trees with varying levels of water stress tolerance has not yet been studied. This study aimed to examine ambrosia beetle preference for tree species varying in their tolerance to water stress. Container-grown dogwoods, redbuds, and red maples were exposed to flood, drought, or sufficient water treatments for 28 d and beetle attacks were counted every third day.

View Article and Find Full Text PDF

Leaf and Root Functional Traits of Woody and Herbaceous Halophytes and Their Adaptations in the Yellow River Delta.

Plants (Basel)

January 2025

State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271000, China.

Leaves and roots perform assimilation, supporting plant growth and functionality. The variations in their functional traits reflect adaptive responses to environmental conditions, yet limited information is available regarding these trait variations and their coordination in saline environments. In this study, 18 common woody and herbaceous halophyte species from the Yellow River Delta were collected, and their leaf and root functional traits were assessed and compared.

View Article and Find Full Text PDF

The partitioning of photosynthate among various forest carbon pools is a key process regulating long-term carbon sequestration, with allocation to aboveground woody biomass carbon (AGBC) in particular playing an outsized role in the global carbon cycle due to its slow residence time. However, directly estimating the fraction of gross primary productivity (GPP) that goes to AGBC has historically been difficult and time-consuming, leaving us with persistent uncertainties. We used an extensive dataset of tree-ring chronologies co-located at flux towers to assess the coupling between AGBC and GPP, calculate the fraction of fixed carbon that is allocated to AGBC, and understand the drivers of variability in this fraction.

View Article and Find Full Text PDF

Creation and long-term in vitro maintenance of valuable genotype collection is one of the modern approach to conservation of valuable gene pool of woody plants. However, during prolonged cultivation, genetic variability of cells and tissues may accumulate and lead to the loss of valuable characteristics of parental plants. It is therefore important to assess the genetic (including cytogenetic) stability of collection clones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!