A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aesculin suppresses the NLRP3 inflammasome-mediated pyroptosis via the Akt/GSK3β/NF-κB pathway to mitigate myocardial ischemia/reperfusion injury. | LitMetric

Aesculin suppresses the NLRP3 inflammasome-mediated pyroptosis via the Akt/GSK3β/NF-κB pathway to mitigate myocardial ischemia/reperfusion injury.

Phytomedicine

Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China. Electronic address:

Published: November 2021

Background: Aesculin (AES), an effective component of Cortex fraxini, is a hydroxycoumarin glucoside that has diverse biological properties. The nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing 3 (NLRP3) inflammasome has been heavily interwoven with the development of myocardial ischemia/reperfusion injury (MIRI). Nevertheless, it remains unclear whether AES makes a difference to the changes of the NLRP3 inflammasome in MIRI.

Purpose: We used rats that were subjected to MIRI and neonatal rat cardiomyocytes (NRCMs) that underwent oxygen-glucose deprivation/restoration (OGD/R) process to investigate what impacts AES exerts on MIRI and the NLRP3 inflammasome activation.

Methods: The establishment of MIRI model in rats was conducted using the left anterior descending coronary artery ligation for 0.5 h ischemia and then untying the knot for 4 h of reperfusion. After reperfusion, AES were administered intraperitoneally using 10 and 30 mg/kg doses. We evaluated the development of reperfusion ventricular arrhythmias, hemodynamic changes, infarct size, and the biomarkers in myocardial injury. The inflammatory mediators and pyroptosis were also assessed. AES at the concentrations of 1, 3, and 10 μM were imposed on the NRCMs immediately before the restoration process. We also determined the cell viability and cell death in the NRCMs exposed to OGD/R insult. Furthermore, we also analyzed the levels of proteins that affect the NLRP3 inflammasome activation, pyroptosis, and the AKT serine/threonine kinase (Akt)/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor-kappa B (NF-κB) signaling pathway via western blotting.

Results: We found that AES notably attenuated reperfusion arrhythmias and myocardia damage, improved the hemodynamic function, and ameliorated the inflammatory response and pyroptosis of cardiomyocytes in rats and NRCMs. Additionally, AES reduced the NLRP3 inflammasome activation in rats and NRCMs. AES also enhanced the phosphorylation of Akt and GSK3β, while suppressing the phosphorylation of NF-κB. Moreover, the allosteric Akt inhibitor, MK-2206, abolished the AES-mediated cardioprotection and the NLRP3 inflammasome suppression.

Conclusions: These findings indicate that AES effectively protected cardiomyocytes against MIRI by suppressing the NLRP3 inflammasome-mediated pyroptosis, which may relate to the upregulated Akt activation and disruption of the GSK3β/NF-κB pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2021.153687DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
24
aes
9
nlrp3
8
nlrp3 inflammasome-mediated
8
inflammasome-mediated pyroptosis
8
myocardial ischemia/reperfusion
8
ischemia/reperfusion injury
8
inflammasome activation
8
rats nrcms
8
inflammasome
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!