Inactivation of p53 is present in almost every tumor, and hence, p53-reactivation strategies are an important aspect of cancer therapy. Common mechanisms for p53 loss in cancer include expression of p53-negative regulators such as MDM2, which mediate the degradation of wildtype p53 (p53α), and inactivating mutations in the TP53 gene. Currently, approaches to overcome p53 deficiency in these cancers are limited. Here, using non-small cell lung cancer and glioblastoma multiforme cell line models, we show that two alternatively spliced, functional truncated isoforms of p53 (p53β and p53γ, comprising exons 1 to 9β or 9γ, respectively) and that lack the C-terminal MDM2-binding domain have markedly reduced susceptibility to MDM2-mediated degradation but are highly susceptible to nonsense-mediated decay (NMD), a regulator of aberrant mRNA stability. In cancer cells harboring MDM2 overexpression or TP53 mutations downstream of exon 9, NMD inhibition markedly upregulates p53β and p53γ and restores activation of the p53 pathway. Consistent with p53 pathway activation, NMD inhibition induces tumor suppressive activities such as apoptosis, reduced cell viability, and enhanced tumor radiosensitivity, in a relatively p53-dependent manner. In addition, NMD inhibition also inhibits tumor growth in a MDM2-overexpressing xenograft tumor model. These results identify NMD inhibition as a novel therapeutic strategy for restoration of p53 function in p53-deficient tumors bearing MDM2 overexpression or p53 mutations downstream of exon 9, subgroups that comprise approximately 6% of all cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569473PMC
http://dx.doi.org/10.1016/j.jbc.2021.101163DOI Listing

Publication Analysis

Top Keywords

nmd inhibition
16
p53 pathway
12
p53
10
nonsense-mediated decay
8
p53β p53γ
8
mdm2 overexpression
8
mutations downstream
8
downstream exon
8
inhibition
5
tumor
5

Similar Publications

Objective: Charcot-Marie Tooth (CMT) is a hereditary neuropathy characterized by muscle weakness and fatigue with no approved therapies. Preclinical studies implicate neuromuscular junction (NMJ) transmission deficits in muscle dysfunction in CMT. This study aimed to evaluate NMJ function in patients with CMT types 1 and 2, and to determine whether enhancing NMJ transmission can improve muscle function in preclinical CMT models.

View Article and Find Full Text PDF

Discovered more than four decades ago, nonsense-mediated mRNA decay (NMD) plays a fundamental role in the regulation of gene expression and is a major contributor to numerous diseases. With advanced technologies, several novel approaches aim to directly circumvent the effects of disease-causing frameshift and nonsense mutations. Additional therapeutics aim to globally dampen the NMD pathway in diseases associated with pathway hyperactivation, one example being Fragile X Syndrome.

View Article and Find Full Text PDF

NMD670 is a first-in-class inhibitor of skeletal muscle-specific chloride channel ClC-1, developed to improve muscle weakness and fatigue in neuromuscular diseases. Preclinical studies show that ClC-1 inhibition enhances muscle excitability, improving muscle contractility and strength. We describe the first-in-human, randomized, double-blind, placebo-controlled study, which evaluated the safety, pharmacokinetics, and pharmacodynamics of single and multiple doses of NMD670 in healthy male and female subjects.

View Article and Find Full Text PDF

Generation of tumor neoantigens by RNA splicing perturbation.

Trends Cancer

November 2024

Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University and Hadassah Medical School, Jerusalem, Israel. Electronic address:

Immunotherapy has revolutionized cancer treatment, but the limited availability of tumor-specific neoantigens still remains a challenge. The potential of alternative mRNA splicing-derived neoantigens as a source of new immunotherapy targets has gained significant attention. Tumors exhibit unique splicing changes and splicing factor mutations which are prevalent in various cancers and play a crucial role in neoantigen production.

View Article and Find Full Text PDF

Multiple myeloma (MM) is closely related to abnormal RNA splicing in its pathogenesis. CDC2-like kinase-2 (CLK2) regulates RNA splicing by phosphorylating serine/arginine-rich splicing factors (SRSFs), but the role of CLK2 in MM remains undefined. This study was to explore the role and mechanism of CLK2 in MM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!