Haematological malignancies account for almost 10% of all cancers diagnosed in sub-Saharan Africa, although the exact incidences and treatment outcomes are difficult to discern because population-based cancer registries in the region are still underdeveloped. More research on haematological malignancies in sub-Saharan Africa is required to establish whether these cancers have a natural history similar to those diagnosed in high-income countries, about which more is known. Several factors negatively affect the outcome of haematological malignancies in sub-Saharan Africa, showcasing a need for improved understanding of the clinicobiological profile of these cancers to facilitate prevention, early detection, diagnosis, and appropriate treatment through increased capacity building, infrastructure, community awareness, coordinated resource mobilisation, and collaboration across the world. The east African governments have pooled resources for common investments to tackle non-communicable diseases, developing the East Africa's Centres of Excellence for Skills and Tertiary Education project funded by the African Development Bank, an initiative that could be replicated for the care of haematological malignancies in other countries in sub-Saharan Africa. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S2352-3026(21)00198-8 | DOI Listing |
Hematol Oncol
January 2025
University of California Irvine, Irvine, California, USA.
Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China.
Histone acetyltransferases p300 (E1A-associated protein p300) and CBP (CREB binding protein), collectively known as p300/CBP due to shared sequence and functional synergy, catalyze histone H3K27 acetylation and consequently induce gene transcription. p300/CBP over-expression or over-activity activates the transcription of oncogenes, leading to cancer cell growth, resistance to apoptosis, tumor initiation and development. The discovery of small molecule inhibitors targeting p300/CBP histone acetyltransferase activity, bromodomains, dual inhibitors of p300/CBP and BRD4 bromodomains, as well as proteolysis-targeted-chimaera p300/CBP protein degraders, marks significant progress in cancer therapeutics.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
The Innate Lymphoid Cells (ILCs) are a family of innate immune cells composed by the Natural Killer (NK) cells and the helper ILCs (hILCs) (ILC1, ILC2, ILC3), both developing from a common ILC precursor (ILCP) derived from hematopoietic stem cells (HSCs). A correct ILC reconstitution is crucial, particularly in patients receiving HSC transplantation (HSCT), the only therapeutic option for many adult and pediatric high-risk hematological malignancies. Indeed, mainly thanks to their cytotoxic activity, NK cells have a strong Graft-versus-Leukemia (GvL) effect.
View Article and Find Full Text PDFDrug Resist Updat
January 2025
Loma Linda University Cancer Center, Loma Linda, CA 92354, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, United States. Electronic address:
Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50 % of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.
View Article and Find Full Text PDFOncol Lett
March 2025
Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China.
Signal transducer and activator of transcription 3 (STAT3), a crucial transcription factor, exerts a notable influence by hyperactivating or acquiring functional mutations in the occurrence and progression of cancers. Hyperactive STAT3 is also implicated in a range of hematopoietic malignancies, especially acute myeloid leukemia (AML). The function of STAT3 is associated with the phosphorylated parallel dimer structure, enabling them to stimulate the transcription of specific genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!