We recently found a positive relationship between estimates of metacognitive efficiency and metacognitive bias. However, this relationship was only examined on a within-subject level and required binarizing the confidence scale, a technique that introduces methodological difficulties. Here we examined the robustness of the positive relationship between estimates of metacognitive efficiency and metacognitive bias by conducting two different types of analyses. First, we developed a new within-subject analysis technique where the original n-point confidence scale is transformed into two different (n-1)-point scales in a way that mimics a naturalistic change in confidence. Second, we examined the across-subject correlation between metacognitive efficiency and metacognitive bias. Importantly, for both types of analyses, we not only established the direction of the effect but also computed effect sizes. We applied both techniques to the data from three tasks from the Confidence Database (N > 400 in each). We found that both approaches revealed a small to medium positive relationship between metacognitive efficiency and metacognitive bias. These results demonstrate that the positive relationship between metacognitive efficiency and metacognitive bias is robust across several analysis techniques and datasets, and have important implications for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560567 | PMC |
http://dx.doi.org/10.1016/j.concog.2021.103196 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!