NeuriteNet: A convolutional neural network for assessing morphological parameters of neurite growth.

J Neurosci Methods

Dept of Neuroscience, University of Texas-Austin, 100 E. 24th St., Austin, TX 78712, USA. Electronic address:

Published: November 2021

Background: During development or regeneration, neurons extend processes (i.e., neurites) via mechanisms that can be readily analyzed in culture. However, defining the impact of a drug or genetic manipulation on such mechanisms can be challenging due to the complex arborization and heterogeneous patterns of neurite growth in vitro. New Method: NeuriteNet is a Convolutional Neural Network (CNN) sorting model that uses a novel adaptation of the XRAI saliency map overlay, which is a region-based attribution method. NeuriteNet compares neuronal populations based on differences in neurite growth patterns, sorts them into respective groups, and overlays a saliency map indicating which areas differentiated the image for the sorting procedure.

Results: In this study, we demonstrate that NeuriteNet effectively sorts images corresponding to dissociated neurons into control and treatment groups according to known morphological differences. Furthermore, the saliency map overlay highlights the distinguishing features of the neuron when sorting the images into treatment groups. NeuriteNet also identifies novel morphological differences in neurons cultured from control and genetically modified mouse strains. Comparison with Existing Methods: Unlike other neurite analysis platforms, NeuriteNet does not require manual manipulations, such as segmentation of neurites prior to analysis, and is more accurate than experienced researchers for categorizing neurons according to their pattern of neurite growth.

Conclusions: NeuriteNet can be used to effectively screen for morphological differences in a heterogeneous group of neurons and to provide feedback on the key features distinguishing those groups via the saliency map overlay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252595PMC
http://dx.doi.org/10.1016/j.jneumeth.2021.109349DOI Listing

Publication Analysis

Top Keywords

saliency map
16
neurite growth
12
map overlay
12
morphological differences
12
neuritenet convolutional
8
convolutional neural
8
neural network
8
method neuritenet
8
neuritenet effectively
8
treatment groups
8

Similar Publications

A salience map is a topographic map that has inputs at each x,y location from many different feature maps and summarizes the combined salience of all those inputs as a real number, salience, which is represented in the map. Of the more than 1 million Google references to salience maps, nearly all use the map for computing the relative priority of visual image components for subsequent processing. We observe that salience processing is an instance of substance-invariant processing, analogous to household measuring cups, weight scales, and measuring tapes, all of which make single-number substance-invariant measurements.

View Article and Find Full Text PDF

Edge-guided feature fusion network for RGB-T salient object detection.

Front Neurorobot

December 2024

Department of Information Engineering, Shanghai Maritime University, Shanghai, China.

Introduction: RGB-T Salient Object Detection (SOD) aims to accurately segment salient regions in both visible light and thermal infrared images. However, many existing methods overlook the critical complementarity between these modalities, which can enhance detection accuracy.

Methods: We propose the Edge-Guided Feature Fusion Network (EGFF-Net), which consists of cross-modal feature extraction, edge-guided feature fusion, and salience map prediction.

View Article and Find Full Text PDF

The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.

View Article and Find Full Text PDF

Background: The lack of clearly defined neuromodulation targets has contributed to the inconsistent results of real-time fMRI-based neurofeedback (rt-fMRI-NF) for the treatment of chronic pain. Functional neurosurgery (funcSurg) approaches have shown more consistent effects in reducing pain in patients with severe chronic pain.

Objective: This study aims to redefine rt-fMRI-NF targets for chronic pain management informed by funcSurg studies.

View Article and Find Full Text PDF

Attention-based image segmentation and classification model for the preoperative risk stratification of thyroid nodules.

World J Surg

December 2024

Monash University Endocrine Surgery Unit, Department of General Surgery, Alfred Hospital, Melbourne, Victoria, Australia.

Background: Despite widespread use of standardized classification systems, risk stratification of thyroid nodules is nuanced and often requires diagnostic surgery. Genomic sequencing is available for this dilemma however, costs and access restricts global applicability. Artificial intelligence (AI) has the potential to overcome this issue nevertheless, the need for black-box interpretability is pertinent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!