Sorption of arsenic by composts and biochars derived from the organic fraction of municipal solid wastes: Kinetic, isotherm and oral bioaccessibility study.

Environ Res

Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São Carlense Ave., 13566-590, São Carlos, Brazil. Electronic address:

Published: March 2022

The historic contamination of water and soils by arsenic (As) is an extremely alarming environmental and public health issue worldwide. This study investigated the relationship between As sorption and physicochemical properties of composts and biochars derived from the organic fraction of municipal solid wastes (OFMSW) towards the development of promising sorbents with value-added solid wastes management solutions. The sorbents were characterized and their effectiveness on the As sorption was tested. Several isothermal and kinetic sorption models were used for the prediction of sorption. Composts did not show promising sorption capacities, and in some cases, the As immobilization was practically null. In contrast, biochars achieved higher sorption performance, and the experimental data fitted well on Dubinin-Rabushkevich and Langmuir models, with higher R values. The maximum sorption capacities of BC700 estimated by such models were 6.495 and 170.252 mg g, respectively, whereas those of BC500 estimated by D-R and Langmuir models were only 0.066 and 0.070 mg g, respectively. In sorption kinetics, As was retained onto biochars at a faster first stage, reaching equilibrium after approximately 1 h and 2 h for initial concentrations of 10 and 100 mg L. The pseudo-second-order, Ritchie's second-order, Ritchie's, and Elovich models more adequately described the sorption kinetics of As onto biochars with high R values. Overall, the complexation and precipitation were predominant mechanisms for As sorption by OFMSW-derived biochars. Furthermore, the mathematical models indicated contributions arise from physisorption and external and internal diffusion mechanisms. Although BC700 can immobilize large As amounts, the gastric phase of the oral bioaccessibility test revealed more than 80% of the sorbed As could be released under conditions similar to a human stomach (pH~1.2). Such conclusions have given important insights about the refining of effective and eco-friendly remediation technologies for the management and rehabilitation of As-contaminated soil and water, particularly in developing countries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.111988DOI Listing

Publication Analysis

Top Keywords

solid wastes
12
sorption
11
composts biochars
8
biochars derived
8
derived organic
8
organic fraction
8
fraction municipal
8
municipal solid
8
oral bioaccessibility
8
sorption capacities
8

Similar Publications

Given the current construction waste accumulation problem, to utilize the resource of red brick solid waste, construction waste red brick was used as a concrete coarse aggregate combined with polypropylene fiber to prepare PPF (polypropylene fiber)-reinforced recycled brick aggregate concrete. Through a cube compression test, axial compression test, and four-point bending test of 15 groups of specimens, the influences of the aggregate replacement rate of recycled brick and the PPF volume on the mechanical properties of recycled brick aggregate concrete reinforced by PPF were studied, and a strength parameter calculation formula was constructed and modified based on the above. Finally, combined with a life cycle assessment (LCA), the carbon emissions of raw materials were analyzed and evaluated.

View Article and Find Full Text PDF

Improving the Structural Efficiency of Punched-Metal-Material-Based Composites.

Polymers (Basel)

December 2024

Faculty of Civil and Mechanical Engineering, Aeronautics, Space Engineering and Transport Institute, Riga Technical University, LV-1011 Riga, Latvia.

This study investigates the potential of reusing punched-steel waste, a significant component of solid inorganic waste, in composite materials for construction applications. Driven by the growing global demand for raw materials (which is projected to quadruple by 2050) and the need for sustainable waste management practices, this research explores the creation of a composite material (PPLK) incorporating punched-steel tape (LPM-4 grade) embedded in a polypropylene matrix. Experimental testing of PPLK specimens (310 × 90 × 6.

View Article and Find Full Text PDF

In order to investigate the mechanism of mechanical performance enhancement and the curing mechanisms of acrylate emulsion (AE) in cement and magnesium slag (MS) composite-stabilized soil (AE-C-M), this study has conducted a comprehensive analysis of the compressive strength and microstructural characteristics of AE-C-M stabilized soil. The results show that the addition of AE significantly improves the compressive strength of the stabilized soil. When the AE content is 0.

View Article and Find Full Text PDF

Agro-industrial residues have transitions from being an environmental problem to being a cost-effective source of biopolymers and value-added chemicals. However, the efficient extraction of the desired products from these residues requires pretreatments. Fungal biorefinery is a fascinating approach for the biotransformation of raw materials into multiple products in a single batch.

View Article and Find Full Text PDF

Identification and Assessment of Toxic Substances in Environmental Justice Cases.

Toxics

December 2024

Department of Environmental Science, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

This study assessed heavy metal contamination in industrial solid waste (S1, S2, S3, and S4) from the Yangtze River Delta region, employing nine risk assessment methods including total content indices (e.g., Igeo, CF) and speciation indices (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!