A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metapredict: a fast, accurate, and easy-to-use predictor of consensus disorder and structure. | LitMetric

Metapredict: a fast, accurate, and easy-to-use predictor of consensus disorder and structure.

Biophys J

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Center for Science and Engineering Living Systems (CSELS), St. Louis, Missouri. Electronic address:

Published: October 2021

Intrinsically disordered proteins and protein regions make up a substantial fraction of many proteomes in which they play a wide variety of essential roles. A critical first step in understanding the role of disordered protein regions in biological function is to identify those disordered regions correctly. Computational methods for disorder prediction have emerged as a core set of tools to guide experiments, interpret results, and develop hypotheses. Given the multiple different predictors available, consensus scores have emerged as a popular approach to mitigate biases or limitations of any single method. Consensus scores integrate the outcome of multiple independent disorder predictors and provide a per-residue value that reflects the number of tools that predict a residue to be disordered. Although consensus scores help mitigate the inherent problems of using any single disorder predictor, they are computationally expensive to generate. They also necessitate the installation of multiple different software tools, which can be prohibitively difficult. To address this challenge, we developed a deep-learning-based predictor of consensus disorder scores. Our predictor, metapredict, utilizes a bidirectional recurrent neural network trained on the consensus disorder scores from 12 proteomes. By benchmarking metapredict using two orthogonal approaches, we found that metapredict is among the most accurate disorder predictors currently available. Metapredict is also remarkably fast, enabling proteome-scale disorder prediction in minutes. Importantly, metapredict is a fully open source and is distributed as a Python package, a collection of command-line tools, and a web server, maximizing the potential practical utility of the predictor. We believe metapredict offers a convenient, accessible, accurate, and high-performance predictor for single-proteins and proteomes alike.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553642PMC
http://dx.doi.org/10.1016/j.bpj.2021.08.039DOI Listing

Publication Analysis

Top Keywords

consensus disorder
12
consensus scores
12
predictor consensus
8
disorder
8
protein regions
8
disorder prediction
8
disorder predictors
8
disorder scores
8
predictor metapredict
8
metapredict
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!