An ionic lock and a hydrophobic zipper mediate the coupling between an insect pheromone receptor BmOR3 and downstream effectors.

J Biol Chem

Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China. Electronic address:

Published: October 2021

Pheromone receptors (PRs) recognize specific pheromone compounds to guide the behavioral outputs of insects, which are the most diverse group of animals on earth. The activation of PRs is known to couple to the calcium permeability of their coreceptor (Orco) or putatively with G proteins; however, the underlying mechanisms of this process are not yet fully understood. Moreover, whether this transverse seven transmembrane domain (7TM)-containing receptor is able to couple to arrestin, a common effector for many conventional 7TM receptors, is unknown. Herein, using the PR BmOR3 from the silk moth Bombyx mori and its coreceptor BmOrco as a template, we revealed that an agonist-induced conformational change of BmOR3 was transmitted to BmOrco through transmembrane segment 7 from both receptors, resulting in the activation of BmOrco. Key interactions, including an ionic lock and a hydrophobic zipper, are essential in mediating the functional coupling between BmOR3 and BmOrco. BmOR3 also selectively coupled with Gi proteins, which was dispensable for BmOrco coupling. Moreover, we demonstrated that trans-7TM BmOR3 recruited arrestin in an agonist-dependent manner, which indicates an important role for BmOR3-BmOrco complex formation in ionotropic functions. Collectively, our study identified the coupling of G protein and arrestin to a prototype trans-7TM PR, BmOR3, and provided important mechanistic insights into the coupling of active PRs to their downstream effectors, including coreceptors, G proteins, and arrestin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477192PMC
http://dx.doi.org/10.1016/j.jbc.2021.101160DOI Listing

Publication Analysis

Top Keywords

ionic lock
8
lock hydrophobic
8
hydrophobic zipper
8
downstream effectors
8
trans-7tm bmor3
8
bmor3
7
coupling
5
bmorco
5
zipper mediate
4
mediate coupling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!