Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but standard analysis algorithms require sparse emitters, which limits imaging speed and labeling density. Here, we overcome this major limitation using deep learning. We developed DECODE (deep context dependent), a computational tool that can localize single emitters at high density in three dimensions with highest accuracy for a large range of imaging modalities and conditions. In a public software benchmark competition, it outperformed all other fitters on 12 out of 12 datasets when comparing both detection accuracy and localization error, often by a substantial margin. DECODE allowed us to acquire fast dynamic live-cell SMLM data with reduced light exposure and to image microtubules at ultra-high labeling density. Packaged for simple installation and use, DECODE will enable many laboratories to reduce imaging times and increase localization density in SMLM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611669PMC
http://dx.doi.org/10.1038/s41592-021-01236-xDOI Listing

Publication Analysis

Top Keywords

deep learning
8
single-molecule localization
8
labeling density
8
learning enables
4
enables fast
4
fast dense
4
dense single-molecule
4
localization
4
localization high
4
high accuracy
4

Similar Publications

Background: Unplanned readmission, a measure of surgical quality, occurs after 4.8% of primary total knee arthroplasties (TKA). Although the prediction of individualized readmission risk may inform appropriate preoperative interventions, current predictive models, such as the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) surgical risk calculator (SRC), have limited utility.

View Article and Find Full Text PDF

Background: Early Childhood Education and Care (ECEC) centers play an important role in fostering healthy dietary habits. The Nutrition Now project focusing on improving dietary habits during the first 1000 days of life. Central to the project is the implementation of an e-learning resource aimed at promoting feeding practices among staff and healthy dietary behaviours for children aged 0-3 years in ECEC.

View Article and Find Full Text PDF

Background And Purpose: The purpose of reflection in the learning process is to create meaningful and deep learning. Considering the importance of emphasizing active and student-centered methods in learning and the necessity of learners' participation in the education process, the present study was conducted to investigate the effect of flipped classroom teaching method on the amount of reflection ability in nursing students and the course of professional ethics.

Study Method: The current study is a quasi-experimental study using Solomon's four-group method.

View Article and Find Full Text PDF

Optimizing hip MRI: enhancing image quality and elevating inter-observer consistency using deep learning-powered reconstruction.

BMC Med Imaging

January 2025

Department of Magnetic Resonance Imaging, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.

Background: Conventional hip joint MRI scans necessitate lengthy scan durations, posing challenges for patient comfort and clinical efficiency. Previously, accelerated imaging techniques were constrained by a trade-off between noise and resolution. Leveraging deep learning-based reconstruction (DLR) holds the potential to mitigate scan time without compromising image quality.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are pivotal in the initiation and progression of complex human diseases and have been identified as targets for small molecule (SM) drugs. However, the expensive and time-intensive characteristics of conventional experimental techniques for identifying SM-miRNA associations highlight the necessity for efficient computational methodologies in this field.

Results: In this study, we proposed a deep learning method called Multi-source Data Fusion and Graph Neural Networks for Small Molecule-MiRNA Association (MDFGNN-SMMA) to predict potential SM-miRNA associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!