Objective: This work aimed at producing silica-blow-spun nanofibers containing silver nanoparticles (SiO/Ag) and investigating the effect of their incorporation in different proportions, with or without pre-treatment with a silane coupling agent, on the mechanical, physicochemical, and biological properties of a commercial composite low-viscosity bulk-fill resin.

Methods: The production of SiO/Ag nanofibers was confirmed by transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). A portion of the produced nanofibers was silanized. Scanning electronic microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and agar diffusion tests against Streptococcus mutans were used to verify the differences between silanized and non-silanized nanofibers. Different proportions (0.5 wt% and 1 wt%) of silanized (SiO/Ag-0.5S and SiO/Ag-1S) and non-silanized (SiO/Ag-0.5NS and SiO/Ag-1NS) nanofibers were incorporated into the bulk-fill composite (Opus Bulk Fill Flow, FGM). A commercial composite was used as the control. Evaluation of the color parameters (L*, a*, and b*), radiopacity, contact angle, antimicrobial activity, Vickers microhardness, surface roughness (Sa and Sq), flexural strength, and SEM of the fractured surfaces were performed. The data were analyzed using the Mann-Whitney U test (fiber morphology), Kruskal-Wallis tests, with Dunn's post hoc test (antimicrobial activity of the specimen against S. mutans), Student's t-test (disk diffusion), one-way ANOVA and Tukey (color, radiopacity, and contact angle), and two-way ANOVA and Tukey (microhardness, surface roughness, and flexural strength) tests. All statistical analyses were performed at a significance level of 1% (α = 0.01).

Results: Porous nanometric SiO/Ag fibers were successfully produced. The silanization process, confirmed by FTIR, increased the diameter and contact angle and reduced the growth inhibition halos of the nanofibers (p < 0.01). After the incorporation of nanofibers into the dental composite, all color parameters were altered in all the experimental groups (p < 0.01). All the groups presented adequate radiopacity values. No statistical difference was observed in the contact angles of the experimental composites (p > 0.01). The lowest microbial counts were obtained in the SiO/Ag-0.5S group; although no significant difference was observed with the control group (p < 0.01). The SiO/Ag-1S, SiO/Ag-0.5S, and SiO/Ag-0.5NS groups exhibited higher microhardness after 30 d of immersion in water (p < 0.01). The surface roughness (Sa-μm) resembled that of the control at baseline, except for the SiO/Ag-1NS group. For the baseline evaluation of flexural strength, all the experimental groups exhibited lower values than the control, except for SiO/Ag-0.5NS and SiO/Ag-0.5S, but after 30 d of immersion in water, there was no difference (p < 0.01).

Significance: The incorporation of 0.5% wt. of silanized nanofibers in the commercial composite (SiO/Ag-0.5S) seemed to be promising, especially for its greater inhibition of S. mutans, adequate roughness, and flexural strength, in addition to high hardness, even after aging in water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2021.08.012DOI Listing

Publication Analysis

Top Keywords

contact angle
16
flexural strength
16
commercial composite
12
surface roughness
12
roughness flexural
12
nanofibers
9
nanofibers silver
8
silver nanoparticles
8
nanoparticles sio/ag
8
mechanical physicochemical
8

Similar Publications

Background: Ultracongruent (UC) total knee replacement (TKR) designs, serving as alternatives to posterior stabilized (PS) and cruciate retaining (CR) designs, lack conclusive evidence regarding posterior femoral rollback. This study aimed to compare intraoperative posterior femoral rollback and maximal knee flexion between UC and PS inserts, addressing the paucity of literature on femoral rollback achieved with UC designs in total knee replacement.

Methods: A consecutive cohort of 20 patients undergoing robotic-assisted primary total knee replacement, posterior femoral rollback and maximal intraoperative knee flexion were assessed.

View Article and Find Full Text PDF

Bonding performance of universal adhesive systems to enamel - Effects of the acidic composition.

Dent Mater

December 2024

Graduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, Porto Alegre 2492, Brazil; Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, Porto Alegre 2492, Brazil. Electronic address:

Objectives: To evaluate the self-etch bonding potential of universal adhesive systems with varying acidic compositions by analyzing the wettability properties, topographical change, and microshear bond strength (µSBS) to enamel.

Methods: Eight universal adhesives were tested: All-Bond Universal (Bisco), Ambar Universal (FGM), Gluma Bond Universal (Kulzer), OptiBond Universal (Kerr), Peak Universal Bond (Ultradent), Prime&Bond Universal (Dentsply), Singlebond Universal (3 M ESPE), and Tetric N-Bond Universal (Ivoclar). Bovine incisors were prepared and treated with each adhesive according to the manufacturer's instructions.

View Article and Find Full Text PDF

This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.

View Article and Find Full Text PDF

A straightforward and effective approach was introduced for creating a multifunctional cellulose fabric in this paper. The epoxy groups in epoxidized soybean oil participated in ring-opening reactions with hydroxyl groups present in cellulose fibers and amino groups found in polyhexamethylene guanidine hydrochloride, respectively, under alkaline conditions. Polyhexamethylene guanidine hydrochloride could introduce cationic groups, while epoxidized soybean oil could contribute hydrophobic alkane chains.

View Article and Find Full Text PDF

Nanoscale insight into the interaction mechanism underlying the transport of microplastics by bubbles in aqueous environment.

J Colloid Interface Sci

December 2024

School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China. Electronic address:

The ecological risk of microplastics (MPs) is raising concern about their transport and fate in aquatic ecosystems. The capture of MPs by bubbles is a ubiquitous natural phenomenon in water-based environment, which plays a critical role in the global cycling of MPs, thereby increasing their environmental threats. However, the nanoscale interaction mechanisms between bubbles and MPs underlying MPs transport by bubbles in complex environmental systems remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!