Background: Deep-sea animals in hydrothermal vents often form endosymbioses with chemosynthetic bacteria. Endosymbionts serve essential biochemical and ecological functions, but the prokaryotic viruses (phages) that determine their fate are unknown.
Results: We conducted metagenomic analysis of a deep-sea vent snail. We assembled four genome bins for Caudovirales phages that had developed dual endosymbiosis with sulphur-oxidising bacteria (SOB) and methane-oxidising bacteria (MOB). Clustered regularly interspaced short palindromic repeat (CRISPR) spacer mapping, genome comparison, and transcriptomic profiling revealed that phages Bin1, Bin2, and Bin4 infected SOB and MOB. The observation of prophages in the snail endosymbionts and expression of the phage integrase gene suggested the presence of lysogenic infection, and the expression of phage structural protein and lysozyme genes indicated active lytic infection. Furthermore, SOB and MOB appear to employ adaptive CRISPR-Cas systems to target phage DNA. Additional expressed defence systems, such as innate restriction-modification systems and dormancy-inducing toxin-antitoxin systems, may co-function and form multiple lines for anti-viral defence. To counter host defence, phages Bin1, Bin2, and Bin3 appear to have evolved anti-restriction mechanisms and expressed methyltransferase genes that potentially counterbalance host restriction activity. In addition, the high-level expression of the auxiliary metabolic genes narGH, which encode nitrate reductase subunits, may promote ATP production, thereby benefiting phage DNA packaging for replication.
Conclusions: This study provides new insights into phage-bacteria interplay in intracellular environments of a deep-sea vent snail. Video Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418041 | PMC |
http://dx.doi.org/10.1186/s40168-021-01099-6 | DOI Listing |
Georgian Med News
October 2024
1Laboratory of General Microbiology, George Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.
Stenotrophomonas maltophilia is a highly adaptable gram-negative bacteria, demonstrating resilience in metal-contaminated environment, which makes it a key subject for understanding microbial survival under heavy metal stress. This study investigates the effects of cadmium ions (Cd²⁺) on the growth dynamics, cadmium uptake, and bacteriophage vB_Stm18-host interactions, with implications for environmental microbiology and applied biotechnology. Growth analysis revealed that S.
View Article and Find Full Text PDFSci Rep
May 2024
Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition.
View Article and Find Full Text PDFAnaerobe
June 2024
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France. Electronic address:
Microbiol Spectr
December 2023
Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
The application of plant-beneficial microorganisms to protect crop plants is a promising alternative to the usage of chemicals. However, biocontrol research often faces difficulties in implementing this approach due to the inconsistency of the bacterial inoculant to establish itself within the root microbiome. Beneficial bacterial inoculants can be decimated by the presence of their natural predators, notably bacteriophages (also called phages).
View Article and Find Full Text PDFRNA Biol
January 2023
Laboratory of Gene Technology, KU Leuven, Leuven, Belgium.
Phage therapy is a promising adjunct therapeutic approach against bacterial multidrug-resistant infections, including -derived infections. Nevertheless, the current knowledge about the phage-bacteria interaction within a human environment is limited. In this work, we performed a transcriptome analysis of phage-infected adhered to a human epithelium (Nuli-1 ATCC® CRL-4011™).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!