In this study, novel high throughput metal waste chips and foam electrodes were developed for the electrocoagulation of graywater for the first time. The developed electrodes were then compared with traditional metal plate electrodes, which showed higher efficiency of developed electrodes. The effective parameters of pH, electrode distance, applied voltage, and reaction time on COD removal were optimized using RSM as a multivariate optimization technique, and the data were analyzed by ANOVA, normal plot, residual distribution, and 3D plots. The optimal conditions for electrocoagulation of graywater using metal (Al) plate electrode were determined as a pH of 6.86, electrode distance of 5 mm, and applied voltage of 5 V for a reaction time of 10 min, resulting in 89.1% COD removal and 74% turbidity removal. Finally, the performance of aluminum plate electrodes, foam electrodes, and electrodes made from metal waste chips was compared using COD removal efficiency as the index, revealing 84%, 93%, and 87% COD removal, respectively. These results demonstrated that the newly developed electrodes are suitable for graywater treatment with excellent COD removal efficiency, metal chip waste recycling, and cost-saving.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2021.1976845 | DOI Listing |
J Environ Manage
January 2025
School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China. Electronic address:
Photosynthetic bacteria (PSB) excel in wastewater treatment by removing pollutants and generating biomass but are challenging to optimize due to complex operational and environmental interactions. Neural Ordinary Differential Equations, Elastic Net, Stacking, and Categorical Boosting were applied as artificial intelligence methods to predict chemical oxygen demand (COD) removal efficiency, biomass productivity, biomass yield, and energy yield. Among these, the Stacking model demonstrated superior predictive performance across all targets.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, China. Electronic address:
The treatment of landfill leachate using anaerobic membrane bioreactors (AnMBRs) often faces challenges such as poor removal efficiency, low methane yield and membrane fouling. This study applied AnMBRs with incrementally adding conductive materials to enhance the treatment of landfill leachate under high organic loading rates(35 kg COD/(m∙d)). With 50 g/L activated carbon, COD removal percentages and methane yield increased to 81.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece.
Vertical subsurface flow constructed wetlands (VSSF CWs) were employed to investigate the use of biochar that could be produced with local agricultural biomass through pyrolysis, recycled glass from local recycling companies and gel beads with decreased packing volume and shipping cost as substrate alternatives to sand. The materials were assessed in terms of granulometry, porosity, adsorption capacity and hydraulic conductivity and were used for the treatment of an upflow anaerobic sludge blanket (UASB) reactor, treating domestic wastewater, effluent. Granulometry was a major factor impacting TSS removal that ranged from 81% ± 10% to 97% ± 2%.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
APESA Pôle valorisation, Montardon, France.
This study evaluated the growth performance of and microalgae cultivated in diluted liquid digestate supplemented with CO, comparing their efficiency to that of a conventional synthetic media. The presence of an initial concentration of ammonium of 125 mg N-NH .L combined with the continuous injection of 1% v/v CO enhanced the optimal growth responses and bioremediation potential for both strains in 200-mL cultures.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
To prevent water scarcity, wastewater must be discharged to the surface or groundwater after being treated. Another method is to reuse wastewater in some areas after treatment and evaluate it as much as possible. In this study, it is aimed to recover and reuse the caustic (sodium hydroxide, NaOH) used in the recycling of plastic bottles from polyethylene terephthalate (PET) washing wastewater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!