Objective: Ulcerative mucositis (UM) is a devastating complication of most cancer therapies with less recognized risk factors. Whilst risk predictions are most vital in adverse events, we utilized Machine learning (ML) approaches for predicting chemotherapy-induced UM.

Methods: We utilized 2017 National Inpatient Sample database to identify discharges with antineoplastic chemotherapy-induced UM among those received chemotherapy as part of their cancer treatment. We used forward selection and backward elimination for feature selection; lasso and Gradient Boosting Method were used for building our linear and non-linear models.

Results: In 2017, there were 253 (unweighted numbers) chemotherapy-induced UM patient discharges from 21,626 (unweighted numbers) adult patients who received antineoplastic chemotherapy as part of their cancer treatment. Our linear model, lasso showed performance (C-statistics) AUC: 0.75 (test dataset), 0.75 (training dataset); the Gradient Boosting Method (GBM) model showed AUC: 0.76 in the training and 0.79 in the test datasets. The feature selection derived from stepwise forward selection and backward elimination methods showed variables of importance--antineoplastic chemotherapy-induced pancytopenia, agranulocytosis due to cancer chemotherapy, fluid and electrolyte imbalance, age, anemia due to chemotherapy, median household income, and depression. Higher importance variable derived from GBM in the order of importance were antineoplastic chemotherapy-induced pancytopenia > co-morbidity score > agranulocytosis due to cancer chemotherapy > age > and fluid and electrolyte imbalance. Further, when the analysis was stratified to females only, the ML models performed better than the unstratified model.

Conclusion: Our study showed ML methods performed well in predicting the chemotherapy-induced UM. Predictors identified through ML approach matched to the clinically meaningful and previously discussed predictors of the chemotherapy-induced UM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmedinf.2021.104563DOI Listing

Publication Analysis

Top Keywords

feature selection
12
predicting chemotherapy-induced
12
chemotherapy-induced
8
ulcerative mucositis
8
machine learning
8
antineoplastic chemotherapy-induced
8
chemotherapy cancer
8
cancer treatment
8
forward selection
8
selection backward
8

Similar Publications

The Zika virus (ZIKV), an arbovirus within the Flavivirus genus, is associated with severe neurological complications, including Guillain-Barré syndrome in affected individuals and microcephaly in infants born to infected mothers. With no approved vaccines or antiviral treatments available, there is an urgent need for effective therapeutic options. This study aimed to identify new natural compounds with inhibitory potential against the NS2B-NS3 protease (PDB ID: 5LC0), an essential enzyme in viral replication.

View Article and Find Full Text PDF

The world is moving towards the utilization of hydrogen vehicle technology because its advantages are uniformity in power production, more efficiency, and high durability when compared to fossil fuels. So, in this work, the Proton Exchange Membrane Fuel Stack (PEMFS) device is selected for producing the energy for the hydrogen vehicle. The merits of this fuel technology are the possibility of operating less source temperature, and more suitability for stationery and transportation applications.

View Article and Find Full Text PDF

This study investigates the use of multi-layered porous media (MLPM) to enhance thermal energy transfer within a counterflow double-pipe heat exchanger (DPHE). We conducted computational fluid dynamics (CFD) simulations on DPHEs featuring five distinct MLPM configurations, analyzed under both fully filled and partially filled conditions, alongside a conventional DPHE. The impact of various parameters such as porous layer arrangements, thickness, and flow Reynolds numbers on pressure drop, logarithmic mean temperature difference (LMTD), and performance evaluation criterion (PEC) was assessed.

View Article and Find Full Text PDF

This study aimed to compare computed tomography (CT) findings between basaloid lung squamous cell carcinoma (SCC) and non-basaloid SCC. From July 2003 to April 2021, 39 patients with surgically proven basaloid SCC were identified. For comparison, 161 patients with surgically proven non-basaloid SCC from June 2018 to January 2019 were selected consecutively.

View Article and Find Full Text PDF

In recent years, immune checkpoint inhibitors (ICIs) has emerged as a fundamental component of the standard treatment regimen for patients with head and neck squamous cell carcinoma (HNSCC). However, accurately predicting the treatment effectiveness of ICIs for patients at the same TNM stage remains a challenge. In this study, we first combined multi-omics data (mRNA, lncRNA, miRNA, DNA methylation, and somatic mutations) and 10 clustering algorithms, successfully identifying two distinct cancer subtypes (CSs) (CS1 and CS2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!