Dichlorodiphenyltrichloroethane (DDT), a persistent organochlorine pesticide, has been linked to adverse biological effects in organisms. However, there is limited knowledge about its toxic effects on marine organisms and the underlying molecular mechanisms. This study investigated the toxic effects of DDT in the hooded oyster Saccostrea cucullata. The oysters were exposed to DDT at concentrations of 0, 10, 50, 100, 500, 1000 and 2000 µg/L for 96 h and the LC (96 h) was 891.25 µg/L. Two sublethal concentrations (10 and 100 µg/L) were used to investigate the histopathological effects and the proteome response. Histopathological results showed that DDT caused the alteration of mantle tissue. This included the induction of mucocytes in the epithelium and the inflammatory effect in the connective tissue indicated by the enlargement of blood sinus and hemocyte aggregation within the sinus. Proteomic results showed that, amongst approximately 500 protein spots that were detected across 2DE gels, 51 protein spots were differentially expressed (P < 0.01; fold change > 1.2). Of these, 29 protein spots were identified by LC-MS/MS. These included 23 up-regulated, 5 down-regulated and 1 fluctuating spots. Thus, we observed that stress response and cytoskeletal proteins are the central targets of DDT action. Furthermore, DDT alters the expression of proteins involved in energy metabolism, calcium homeostasis and other proteins of unknown function. Additionally, proteomic results clearly elucidated the molecular response of the histopathological changes which were driven by the alteration of cytoskeletal proteins. Our results improve the current knowledge of toxicity of the DDT to histology and molecular response of oyster proteome to DDT exposure. In addition, histopathological changes will be beneficial for the development of an appropriate guideline for health assessment of this species in ecotoxicological context.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112729DOI Listing

Publication Analysis

Top Keywords

protein spots
12
toxicity ddt
8
ddt hooded
8
hooded oyster
8
oyster saccostrea
8
saccostrea cucullata
8
molecular mechanisms
8
ddt
8
toxic effects
8
response histopathological
8

Similar Publications

Safety and Efficacy of Long-term Use of Infliximab in Severe Juvenile Dermatomyositis - 12 Years of Follow-up.

Acta Dermatovenerol Croat

November 2024

Prof. Marija Jelušić, MD, PhD, Department of Paediatrics, University of Zagreb, School of Medicine, Division of Clinical Immunology, Rheumatology and Allergology, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000 Zagreb, Croatia;

Juvenile dermatomyositis with emphasized vasculopathy is rare, but the most severe form of the disease, with a poor prognosis with relapsing and chronic course or, in some cases, lethal outcome. We present a case of a 19-year-old Caucasian female, who developed severe acute juvenile dermatomyositis with emphasized multisystem vasculopathy, including retinal vasculopathy and maculopathy (cotton-wool spots, retinal hemorrhages, macular edema) at the age of 8. Due to no response to standard treatment protocols and rapid worsening of clinical symptoms and laboratory findings, a TNF inhibitor (infliximab) was introduced after the third week of treatment resulting in complete normalisation of muscle enzyme levels and complete resolution of eye changes within the next 2 weeks with a gradual general recovery.

View Article and Find Full Text PDF

In recent years, advances in artificial intelligence (AI) have transformed structural biology, particularly protein structure prediction. Though AI-based methods, such as AlphaFold (AF), often predict single conformations of proteins with high accuracy and confidence, predictions of alternative folds are often inaccurate, low-confidence, or simply not predicted at all. Here, we review three blind spots that alternative conformations reveal about AF-based protein structure prediction.

View Article and Find Full Text PDF

From the 1950s to the present, the main tool for obtaining fungal industrial producers of secondary metabolites remains the so-called classical strain improvement (CSI) methods associated with multi-round random mutagenesis and screening for the level of target products. As a result of the application of such techniques, the yield of target secondary metabolites in high-yielding (HY) strains was increased hundreds of times compared to the wild-type (WT) parental strains. However, the events that occur at the molecular level during CSI programs are still unknown.

View Article and Find Full Text PDF

, Encoding a Leucine-Rich Repeat Containing Receptor-like Protein, Is a Major Aphid () Resistance Gene in Sorghum.

Int J Mol Sci

December 2024

USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.

Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.

View Article and Find Full Text PDF

A simply synthesized, silver ions-doped porous gold microparticles-based SERS aptamer sensor for ultrasensitive and broad-range quantitative detection of IL-6.

Anal Chim Acta

January 2025

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Background: The multifunctional cytokine interleukin-6 (IL-6) plays a pivotal role in chronic and acute inflammatory responses, underscoring the importance of accurately determining IL-6 levels for early diagnosis, prevention, and treatment of inflammation.

Results: This study developed a versatile and innovative single-particle surface-enhanced Raman spectroscopy (SERS) sensing platform for the precise and sensitive quantification of IL-6 in complex samples using a novel one-pot synthesized, silver ions-doped three-dimensional porous gold microparticles (PGMs) with abundant hot spots for robust SERS enhancement. By rationally designing rich cytosine-Ag-cytosine base pairs between IL-6 aptamers and complementary chains on the PGMs, we harnessed the SERS-enhancing effect to achieve highly sensitive and specific IL-6 quantification within a wide range of 10 to 10 mg/mL and a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!