In this work, a CdSe@CdS quantum dots (QDs) based label-free electrochemiluminescence (ECL) aptasensor was developed for the specific and sensitive detection of ochratoxin A (OTA). Chitosan (CHI) could immobilize abundant QDs on the surface of an Au electrode as the luminescent nanomaterials. Glutaraldehyde was used as the crosslinking agent for coupling a large number of OTA aptamers. Thanks to the excellent stability, good biocompatibility, and strong ECL intensity of CdSe@CdS QDs, as well as the quick reactions of the generated SO•- in the electrolyte, strong ECL signals were measured. Because of the specific recognition of aptamer toward OTA, the reduced ECL signals caused by OTA in the samples were recorded for quantify the content of OTA. After optimizing a series of crucial conditions, the ECL aptasensor displayed superior sensitivity for OTA with a detection limit of 0.89 ng/mL and a wide linear concentration range of 1-100 ng/mL. The practicability and viability were verified through the rapid and facile analysis of OTA in real Lily and Rhubarb samples with recovery rates (n = 3) of 98.1-105.6% and 97.3-101.5%, respectively. The newly-developed QDs-based ECL aptasensor provided a new universal analytical tool for more mycotoxins in safety assessment of foods and feeds, environmental monitoring, and clinical diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.131994 | DOI Listing |
Talanta
January 2025
School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China. Electronic address:
Searching for new alternative to tripropylamine (TPrA) with low toxicity and high chemical stability for the tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium (II) (Ru(dcbpy)) based coreactant electrochemiluminescence (ECL) system is essential for widespread analytical applications. Here, nitrogen-doped graphene quantum dots (NGQDs) have been discovered to significantly amplify the ECL emission and increase the ECL efficiency of Ru(dcbpy) for the first time. However, the mechanism by which NGQDs act as coreactants is not well comprehended.
View Article and Find Full Text PDFNanoscale
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Neurodegenerative diseases, characterized by the progressive deterioration of neuronal function and structure, pose significant global public health and economic challenges. Brain-Derived Neurotrophic Factor (BDNF), a key regulator of neuroplasticity and neuronal survival, has emerged as a critical biomarker for various neurodegenerative and psychiatric disorders, including Alzheimer's disease. Traditional diagnostic methods, such as Enzyme-Linked Immunosorbent Assay (ELISA) and electrochemiluminescence (ECL) assays, face limitations in terms of sensitivity, stability, reproducibility, and cost-effectiveness.
View Article and Find Full Text PDFAnal Chem
December 2024
Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
Among the various aflatoxin B1 (AFB1) assays, performing accurate detection is difficult because false positives and false negatives are frequent due to limited sensitivity, expensive equipment, or inadequate pretreatment during operation. Here, an "off-on" switch-type electrochemiluminescence (ECL) aptasensor armed with cobalt-sulfur quantum dots was encapsulated in hollow cobalt-layered double hydroxide nanocages as an enhanced luminescent probe (Co-LDH@QDs), and a ferrocene-modified aptamer (Fc-APT) was used as a luminescent quencher. In general, when Fc-APT was hybridized with complementary DNA modified with a DNA nanotetrahedron, electron transfer between ferrocene and Co-LDH@QDs was facilitated, leading to efficient quenching of the ECL intensity into an "off" state in the absence of AFB1.
View Article and Find Full Text PDFFood Res Int
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia. Electronic address:
In this study, an electroluminescent (ECL) aptasensor that could efficiently and sensitively detect acetamiprid (ACE) in vegetables was constructed based on an exonuclease-assisted target cycling amplification strategy. Bimetallic RuZn-based metal-organic framework (RuZn-MOF), nucleic acid exonuclease VII (Exo VII) and tetrahedral DNA nanostructure (TDN) were used as constituent materials. First, RuZn-MOF was a substrate material with good luminescence performance and was synthesized by a hydrothermal method.
View Article and Find Full Text PDFMikrochim Acta
November 2024
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
An efficient "on-off-on" electrochemiluminescence (ECL) aptasensor utilizing dual-mechanism quenching was constructed for detecting furanyl fentanyl (FuF). The first signal "on" state was achieved by novel dual-ligand zinc metal-organic frameworks (Zn-MOFs), which were synthesized by self-assembly reaction using zinc atom clusters as metal nodes, achieving strong and stable ECL emission. The "off" state was realized by the energy and electron quenching effect of copper-doped WO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!