Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionva1ai2feh2rlhhrkreg2f0ot91nvvvnu): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fomesafen is an herbicide used in soybean production, and sugar beet is a sensitive crop to fomesafen. When the herbicide is sprayed in the field, it is easy to cause floating and depositing on non-target crops, resulting in crop poisoning and reducing yield. There are few on the phenomenon and mechanism of fomesafen herbicide drift on sugar beet. There are few reports on the phenomenon and mechanism of ether herbicide migration on phytotoxicity of sugar beet. Therefore, in this experiment, indoor potted plants were used to simulate the dose of fomesafen drift deposited on sugar beet in the field to study the effects of fomesafen on the growth, photosynthetic system, and physiological indexes of seedlings for sugar beet were studied. The results showed that fomesafen at the dose of 225 g a.i. ha significantly inhibited the plant height, root length, and biomass of sugar beet. Compared with the control, the net photosynthetic rate, stoma conductance, transpiration rate, and total chlorophyll pigment content of leaves were reduced by 77.16%, 83.84%, 64.00%, and 28.13%, respectively. Treatment with a dose of 225 g a.i. ha also damaged the photosynthetic system II of the leaves, lowering the performance index on absorption energy, maximum quantum yield and, the energy of electron transfer, causing photoinhibition and photodamage. In addition, fomesafen significantly increased the content of malondialdehyde and the activity of peroxidase in leaves of sugar beet, reducing the activities of superoxide dismutase and catalase. Overall, this study is helpful to understand the drift and deposition of fomesafen on sugar beet and to discuss the phytotoxicity risk and dose of fomesafen on the beet, as a result of controlling the dose of fomesafen sprayed in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.132073 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!