Microfluidics based techniques for generation of cell-laden microbeads are emerging as an attractive route to 3D cell encapsulation due to the precise control provided by microfluidics. However, existing microfluidics based cell encapsulation methods are restricted to 2D planar devices and use of passive methods for droplet generation. In this work, we report the development of a 3D glass-PDMS (polydimethylsiloxane) hybrid device for complete on-chip generation of cell-laden alginate beads in the presence of electric fields. The 3D hybrid device allows application of electric fields for active control of droplet (sodium alginate) size without the need for electrode patterning or liquid electrodes. Chemical gelation is achieved through on-chip coalescence of sodium alginate droplets and calcium chloride plugs, generated using coflow and T-junction geometries respectively. Using this approach, we successfully encapsulate E. coli cells (with viability ∼90 %) into alginate microbeads and perform comprehensive spatio-temporal growth and viability studies. The active control of droplet size coupled with complete on-chip gelation demonstrated here is a promising technology for cell encapsulation with applications such as cell therapy, organ repair, biocatalysis, and microbial fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.112065DOI Listing

Publication Analysis

Top Keywords

electric fields
12
cell encapsulation
12
presence electric
8
viability studies
8
microfluidics based
8
generation cell-laden
8
hybrid device
8
complete on-chip
8
active control
8
control droplet
8

Similar Publications

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

A Discussion on the Critical Electric Rayleigh Number for AC Electrokinetic Flow of Binary Fluids in a Divergent Microchannel.

Langmuir

January 2025

State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710127, China.

Electrokinetic (EK) flow is a type of flow driven or manipulated by electric body forces, influenced by various factors such as electric field intensity, electric field form, frequency, electric permittivity/conductivity, fluid viscosity, etc. The diversity of dimensionless parameters, such as the electric Rayleigh number, complicates the comparison of the EK flow stability. Consequently, comparing the performance and cost of micromixers or reactors based on EK flow is challenging, posing an obstacle to their industrial and engineering applications.

View Article and Find Full Text PDF

The ventromedial prefrontal cortex (VMPFC), located along the medial aspect of the frontal area, plays a critical role in regulating arousal/emotions. Its intricate connections with subcortical structures, including the striatum and amygdala, highlight the VMPFC's importance in the neurocircuitry of addiction. Due to these features, the VMPFC is considered a promising target for transcranial magnetic stimulation (TMS) in substance use disorders (SUD).

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Daegu Catholic University, Daegu, Daegu Metropolitan City, Korea, Republic of (South).

Background: The interplaying neuropathology of amyloid plaque, tau tangles, and microglia-driven inflammation (tri-pathology) are related to neuronal and synaptic loss damage in Alzheimer's damages. Interventions that target Aβ or tau individually have not yielded substantial breakthroughs. Iron plays a pivotal role in tri-pathology by protein-bound iron-oxide deposition in amyloid plaque, tau tangle, and microglia, resulting in redox-active toxicity or microglial response induction, such as proinflammatory activation, autophagy dysfunction, and ferroptosis.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) affects over 55 million people worldwide and is characterized by abnormal deposition of amyloid-β and tau in the brain causing neuronal damage and disrupting transmission within brain circuits. Episodic memory loss, executive deficits, and depression are common symptoms arising from altered function in spatially distinct brain circuits that greatly contribute to disability. Transcranial electrical stimulation (tES) can target these circuits and has shown promise to relieve specific symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!