Downregulation of a mitochondrial micropeptide, MPM, promotes hepatoma metastasis by enhancing mitochondrial complex I activity.

Mol Ther

MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China. Electronic address:

Published: February 2022

We and others have shown that MPM (micropeptide in mitochondria) regulates myogenic differentiation and muscle development. However, the roles of MPM in cancer development remain unknown. Here we revealed that MPM was downregulated significantly in human hepatocellular carcinoma (HCC) tissues and its decrease was associated with increased metastasis potential and HCC recurrence. Gain- and loss-of-function investigations disclosed that in vitro migration/invasion and in vivo liver/lung metastasis of hepatoma cells were repressed by restoring MPM expression and increased by silencing MPM. Mechanism investigations revealed that MPM interacted with NDUFA7. Mitochondrial complex I activity was inhibited by overexpressing MPM and enhanced by siMPM, and this effect of siMPM was attenuated by knocking down NDUFA7. The NAD/NADH ratio, which was regulated by complex I, was reduced by MPM but increased by siMPM. Treatment with the NAD precursor nicotinamide abrogated the inhibitory effect of MPM on hepatoma cell migration. Further investigations showed that miR-17-5p bound to MPM and inhibited MPM expression. miR-17-5p upregulation was associated with MPM downregulation in HCC tissues. These findings indicate that a decrease in MPM expression may promote hepatoma metastasis by increasing mitochondrial complex I activity and the NAD/NADH ratio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821931PMC
http://dx.doi.org/10.1016/j.ymthe.2021.08.032DOI Listing

Publication Analysis

Top Keywords

mpm
14
mitochondrial complex
12
complex activity
12
mpm expression
12
hepatoma metastasis
8
revealed mpm
8
hcc tissues
8
nad/nadh ratio
8
downregulation mitochondrial
4
mitochondrial micropeptide
4

Similar Publications

Malignant pleural mesothelioma (MPM) is a rare neoplasm with increasing incidence and mortality rates. Although recent advances have improved the overall prognosis, they have not had an important impact on survival of patients with MPM, such that more effective treatments are needed. Some species of marine snails have been demonstrated to be potential sources of novel anticancer molecules.

View Article and Find Full Text PDF

68Ga-FAPI PET/CT Depicted Non-FDG-Avid Malignant Peritoneal Mesothelioma.

Clin Nucl Med

January 2025

Department of Ultrasound, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Malignant peritoneal mesothelioma (MPM) is a rare and aggressive malignancy of mesothelial cells in the peritoneum. Herein, we describe the 68Ga-FAPI and 18F-FDG PET/CT findings of MPM in a 41-year-old man. In the present case, the primary and metastatic tumors showed intense 68Ga-FAPI accumulation but no significantly increased 18F-FDG uptake.

View Article and Find Full Text PDF

Future Directions in the Treatment of Low-Grade Gliomas.

Cancer J

January 2025

Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL.

There is major interest in deintensifying therapy for isocitrate dehydrogenase-mutant low-grade gliomas, including with single-agent cytostatic isocitrate dehydrogenase inhibitors. These efforts need head-to-head comparisons with proven modalities, such as chemoradiotherapy. Ongoing clinical trials now group tumors by intrinsic molecular subtype, rather than classic clinical risk factors.

View Article and Find Full Text PDF

Viral variant and host vaccination status impact infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet how these factors shift cellular responses in the human nasal mucosa remains uncharacterized. We performed single-cell RNA sequencing (scRNA-seq) on nasopharyngeal swabs from vaccinated and unvaccinated adults with acute Delta and Omicron SARS-CoV-2 infections and integrated with data from acute infections with ancestral SARS-CoV-2. Patients with Delta and Omicron exhibited greater similarity in nasal cell composition driven by myeloid, T cell and SARS-CoV-2 cell subsets, which was distinct from that of ancestral cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!