GPER and IGF-1R mediate the anti-inflammatory effect of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in rats.

J Steroid Biochem Mol Biol

Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China. Electronic address:

Published: November 2021

Neuroinflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Genistein is an estrogen-like phytoestrogen that can exert biological effects via the crosstalk of estrogen receptor and insulin-like growth factor 1 receptor (IGF-1R). The present study aimed to evaluate the involvement of G protein-coupled estrogen receptor (GPER) and IGF-1R in the anti-inflammatory effects of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in ovariectomized rats. Our results showed that genistein treatment could ameliorate the apomorphine-induced rotational behavior in LPS-induced inflammatory PD rat model. Genistein attenuated LPS-induced decrease of the contents of dopamine (DA) and its metabolites in striatum as well as the loss of tyrosine hydroxylase-immunoreactive (TH-IR) neurons in the substantia nigra (SN) of the lesioned side, which could be blocked by GPER antagonist G15 or IGF-1R antagonist JB1. Meanwhile, G15 or JB1 could attenuate the anti-inflammatory effects of genistein in LPS-induced microglial activation and production of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, genistein could inhibit the LPS-induced phosphorylation of p38, JNK, ERK and IκB in the lesioned side of SN and these effects could also be blocked by G15 or JB1. Taken together, our data provide the first evidence that genistein can inhibit the increase of microglia and protect dopaminergic neurons at least in part via GPER and IGF-1R signaling pathways in ovariectomized PD rat model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2021.105989DOI Listing

Publication Analysis

Top Keywords

gper igf-1r
12
genistein
8
genistein lipopolysaccharide
8
lipopolysaccharide lps-induced
8
lps-induced nigrostriatal
8
nigrostriatal injury
8
estrogen receptor
8
anti-inflammatory effects
8
effects genistein
8
rat model
8

Similar Publications

GPER and IGF-1R mediate the anti-inflammatory effect of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in rats.

J Steroid Biochem Mol Biol

November 2021

Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China. Electronic address:

Neuroinflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Genistein is an estrogen-like phytoestrogen that can exert biological effects via the crosstalk of estrogen receptor and insulin-like growth factor 1 receptor (IGF-1R). The present study aimed to evaluate the involvement of G protein-coupled estrogen receptor (GPER) and IGF-1R in the anti-inflammatory effects of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in ovariectomized rats.

View Article and Find Full Text PDF

Anti-inflammatory effect of IGF-1 is mediated by IGF-1R cross talk with GPER in MPTP/MPP-induced astrocyte activation.

Mol Cell Endocrinol

January 2021

Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China. Electronic address:

Insulin-like growth factor-1 (IGF-1) is a potent neuroprotective polypeptide that exerts neuroprotective effects via the IGF-1 receptor (IGF-1R). Our previous study reported that G protein-coupled estrogen receptor (GPER) was involved in the anti-apoptotic effect of IGF-1. The present study was designed to investigate the anti-inflammatory effect of IGF-1 in association with astrocyte activation and the molecular details of the interaction between IGF-1R and GPER.

View Article and Find Full Text PDF

IGF-1 inhibits MPTP/MPP-induced autophagy on dopaminergic neurons through the IGF-1R/PI3K-Akt-mTOR pathway and GPER.

Am J Physiol Endocrinol Metab

October 2020

Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.

Autophagy dysfunctions are involved in the pathogenesis of Parkinson's disease (PD). In the present study, we aimed to evaluate the involvement of G protein-coupled estrogen receptor (GPER) in the inhibitory effect of insulin-like growth factor-1 (IGF-1) against excessive autophagy in PD animal and cellular models. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment significantly induced mouse movement disorder and decreased the protein level of tyrosine hydroxylase (TH) in the substantia nigra (SN) and dopamine (DA) content in striatum.

View Article and Find Full Text PDF

G protein-coupled estrogen receptor is involved in the neuroprotective effect of IGF-1 against MPTP/MPP-induced dopaminergic neuronal injury.

J Steroid Biochem Mol Biol

September 2019

Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China. Electronic address:

Insulin-like growth factor-1 (IGF-1), an endogenous peptide, exerts important role in brain development, neurogenesis and neuroprotection. There are accumulating evidence for the interaction of IGF-1 and 17β-estradiol systems. IGF-1/IGF-1 receptor (IGF-1R) signaling has been reported to regulate G-protein estrogen receptor (GPER) expression in cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!