The traditional paradigm for pharmaceutical manufacturing is focused primarily upon centralized facilities that enable mass production and distribution. While this system reliably maintains high product quality and reproducibility, its rigidity imposes limitations upon new manufacturing innovations that could improve efficiency and support supply chain resiliency. Agile manufacturing methodologies, which leverage flexibility through portability and decentralization, allow manufacturers to respond to patient needs on demand and present a potential solution to enable timely access to critical medicines. Agile approaches are particularly applicable to the production of small-batch, personalized therapies, which must be customized for each individual patient close to the point-of-care. However, despite significant progress in the advancement of agile-enabling technologies across several different industries, there are substantial global regulatory challenges that encumber the adoption of agile manufacturing techniques in the pharmaceutical industry. This review provides an overview of regulatory barriers as well as emerging opportunities to facilitate the use of agile manufacturing for the production of pharmaceutical products. Future-oriented approaches for incorporating agile methodologies within the global regulatory framework are also proposed. Collaboration between regulators and manufacturers to cohesively navigate the regulatory waters is ultimately needed to best serve patients in the rapidly-changing healthcare environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2021.08.032DOI Listing

Publication Analysis

Top Keywords

agile manufacturing
12
pharmaceutical manufacturing
8
global regulatory
8
manufacturing
6
agile
5
re-envisioning pharmaceutical
4
manufacturing increasing
4
increasing agility
4
agility global
4
global patient
4

Similar Publications

Printable and Tunable Bioresin with Strategically Decorated Molecular Structures.

Adv Mater

December 2024

Experimental Mechanics Laboratory, Mechanical Engineering Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.

As personalized medicine rapidly evolves, there is a critical demand for advanced biocompatible materials surpassing current additive manufacturing capabilities. This study presents a novel printable bioresin engineered with tunable mechanical, thermal, and biocompatibility properties through strategic molecular modifications. The study introduces a new bioresin comprising methyl methacrylate (MMA), ethylene glycol dimethacrylate (EGDMA), and a photoinitiator, which is further enhanced by incorporating high molecular weight polymethyl methacrylate (PMMA) to improve biostability and mechanical performance.

View Article and Find Full Text PDF

A broadband hyperspectral image sensor with high spatio-temporal resolution.

Nature

November 2024

State Key Laboratory of CNS/ATM & MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, China.

Hyperspectral imaging provides high-dimensional spatial-temporal-spectral information showing intrinsic matter characteristics. Here we report an on-chip computational hyperspectral imaging framework with high spatial and temporal resolution. By integrating different broadband modulation materials on the image sensor chip, the target spectral information is non-uniformly and intrinsically coupled to each pixel with high light throughput.

View Article and Find Full Text PDF

We demonstrate magnetic induction heating (MIH) with superparamagnetic iron oxide nanoparticles (IONPs) as a new rapid and energy-efficient methodology for synthesizing metal-organic frameworks (MOFs). Acting as localized heat sources, these IONPs overcome the energy losses associated with traditional solvothermal synthesis, which enables a fast, uniform, and highly energy-efficient heat transfer process. The versatility of this method is illustrated for the successful synthesis of three different benchmark MOFs in good yields with high crystallinity.

View Article and Find Full Text PDF

The Agile Robotics for Industrial Automation Competition (ARIAC) was established to advance flexible manufacturing, aiming to increase the agility of robotic assembly systems in unstructured and dynamic industrial environments. ARIAC 2023 introduced eight agility challenges involving faulty parts, flipped parts, faulty grippers, robot malfunctions, sensor blackouts, high-priority orders, insufficient parts, and human safety. Given the unpredictability of these scenarios, it is impractical to develop a specific strategy for each possible situation.

View Article and Find Full Text PDF

mRNA vaccines: a new era in vaccine development.

Oncol Res

September 2024

School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia.

The advent of RNA therapy, particularly through the development of mRNA cancer vaccines, has ushered in a new era in the field of oncology. This article provides a concise overview of the key principles, recent advancements, and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment. mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body's innate immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!