Role of cholesterol flip-flop in oxidized lipid bilayers.

Biophys J

Department of Physics, Kasetsart University, Bangkok, Thailand; Computational Biomodelling Laboratory for Agricultural Science and Technology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand; Specialized Center of Rubber and Polymer Materials for Agriculture and Industry, Faculty of Science, Kasetsart University, Bangkok, Thailand. Electronic address:

Published: October 2021

We performed a series of molecular dynamics simulations of cholesterol (Chol) in nonoxidized 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) bilayer and in binary mixtures of PLPC-oxidized-lipid-bilayers with 0-50% Chol concentration and oxidized lipids with hydroperoxide and aldehyde oxidized functional groups. From the 60 unbiased molecular dynamics simulations (total of 161 μs), we found that Chol inhibited pore formation in the aldehyde-containing oxidized lipid bilayers at concentrations greater than 11%. For both pure PLPC bilayer and bilayers with hydroperoxide lipids, no pores were observed at any Chol concentration. Furthermore, increasing cholesterol concentration led to a change of phase state from the liquid-disordered to the liquid-ordered phase. This condensing effect of Chol was observed in all systems. Data analysis shows that the addition of Chol results in an increase in bilayer thickness. Interestingly, we observed Chol flip-flop only in the aldehyde-containing lipid bilayer but neither in the PLPC nor the hydroperoxide bilayers. Umbrella-sampling simulations were performed to calculate the translocation free energies and the Chol flip-flop rates. The results show that Chol's flip-flop rate depends on the lipid bilayer type, and the highest rate are found in aldehyde bilayers. As the main finding, we shown that Chol stabilizes the oxidized lipid bilayer by confining the distribution of the oxidized functional groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553637PMC
http://dx.doi.org/10.1016/j.bpj.2021.08.036DOI Listing

Publication Analysis

Top Keywords

oxidized lipid
12
lipid bilayer
12
chol
9
lipid bilayers
8
molecular dynamics
8
dynamics simulations
8
plpc bilayer
8
chol concentration
8
oxidized functional
8
functional groups
8

Similar Publications

Protective Effect of Vitamin D Supplementation Against Atherosclerotic Cardiovascular Disease in Type 1 Diabetes Mellitus Model.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 24227, 20006, Saudi Arabia.

Introduction: Cardiovascular disease (CVD) is a leading cause of mortality on a global scale, with a higher prevalence observed among men. This study investigated the protective effect of vitamin D supplementation on CVD.

Methods: A cohort of thirty mice was divided into three groups: control, T1 diabetic, and T1 diabetic groups that received vitamin D treatment.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.

View Article and Find Full Text PDF

Background: Diabetes mellitus and periodontitis are two common chronic diseases with bidirectional relationship. Considering the role of oxidative stress in the pathogenesis of these two diseases, the use of nutritional supplements with antioxidant properties can be useful. The purpose of this study was to determine the effectiveness of daily synbiotic supplement in the management of patients with type 2 diabetes mellitus (T2DM) and periodontal disease (PD) under non-surgical periodontal therapy (NSPT).

View Article and Find Full Text PDF

Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt.

Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity.

View Article and Find Full Text PDF

This work reports the synthesis of a copper metal complex with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, and 2,2'-dipyridylamine employing microwave-assisted synthesis (MWAS). To the best of authors knowledge, this is the first study reporting a NSAID-based complex achieved through MWAS. The coordination compound was characterised by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, and ultraviolet-visible spectrophotometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!