Kinetic and Dynamic Studies of the F(P) + ND → DF + ND Reaction.

J Phys Chem A

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Published: September 2021

The fast F reaction with NH poses a big challenge to experimental studies because of secondary chemical and collisional reactions. The quasi-classical trajectory method is utilized to investigate the mode specificity, product energy disposal, and temperature dependence of the thermal rate coefficient of F + ND → DF + ND on a recently developed potential energy surface. The effect of isotopic substitution is explored by comparing the F + ND reaction with the F + NH reaction. The computed results permit a better understanding of the F + ammonia reaction. The DF vibrational state has a Λ-type distribution, in accordance with the experimental measurement by the fast flow reactor technique. The product ND is dominantly populated in the ground state, and a considerable amount of ND is produced in the fundamental states of the bending mode. The similar vibrational state distributions of HF and NH in the F + NH reaction indicate a weak isotopic substitution effect on the product energy disposal. Exciting the umbrella mode of ND suppresses the reaction at low energies below 5 kcal mol, in sharp contrast to the observation in the F + NH reaction. These dynamical behaviors can be partially explained by the sudden vector projection model. In addition, the thermal rate coefficient of F + ND shows no temperature dependence in the range between 150 and 2000 K. There exists an inverse kinetic isotope effect at temperatures from 150 to 1500 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.1c06515DOI Listing

Publication Analysis

Top Keywords

reaction
8
product energy
8
energy disposal
8
temperature dependence
8
thermal rate
8
rate coefficient
8
isotopic substitution
8
vibrational state
8
kinetic dynamic
4
dynamic studies
4

Similar Publications

Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.

View Article and Find Full Text PDF

Inherent CeO Pore Structure Confined Pd for the Catalytic Performance Regulation.

ACS Appl Mater Interfaces

January 2025

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.

In this study, we synthesized CeO possessing an open pore structure and verified its structural differences compared to CeO lacking such an open pore structure. Using these two CeO samples as catalyst supports and loading them with Pd metals, a series of characterizations were carried out on the resultant catalysts to analyze their structures and properties meticulously. We have elucidated the influence of the open pore structure on the loading position of Pd.

View Article and Find Full Text PDF

Dual Pathways of Photorelease Carbon Monoxide via Photosensitization for Tumor Treatment.

J Am Chem Soc

January 2025

State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.

Carbon monoxide (CO) gas therapy, as an emerging therapeutic strategy, is promising in tumor treatment. However, the development of a red or near-infrared light-driven efficient CO release strategy is still challenging due to the limited physicochemical characteristics of the photoactivated carbon monoxide-releasing molecules (photoCORMs). Here, we discovered a novel photorelease CO mechanism that involved dual pathways of CO release via photosensitization.

View Article and Find Full Text PDF

Protective Coating of Single-Crystalline Ni-Rich Cathode Enables Fast Charging in All-Solid-State Batteries.

ACS Nano

January 2025

Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.

Improving interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is vital for developing high-performance all-solid-state batteries (ASSBs), with compatibility issues among the cell components representing a major challenge. CAM surface coating with a chemically inert ion conductor is a promising approach to suppress side reactions occurring at the cathode interfaces. Another strategy to mitigate mechanical degradation involves utilizing single-crystalline particle morphologies.

View Article and Find Full Text PDF

Specific immunohistochemical expression of Mmp-26 in prostatic adenocarcinoma.

An Acad Bras Cienc

January 2025

Universidade Federal de Pernambuco, Departamento de Histologia e Embriologia, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50760-420 Recife, PE, Brazil.

Matrix metalloproteinases (MMP) have been identified as biomarkers for several diseases, including cancer. The increase in the expression of these enzymes has been related to greater tumor aggressiveness. MMP-26 is expressed constitutively in the endometrium and some cancer cells of epithelial origin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!