The magnetotactic yet uncultured species 'Candidatus Magnetoglobus multicellularis' is a spherical, multicellular ensemble of bacterial cells able to align along magnetic field lines while swimming propelled by flagella. Magnetotaxis is due to intracytoplasmic, membrane-bound magnetic crystals called magnetosomes. The net magnetic moment of magnetosomes interacts with local magnetic fields, imparting the whole microorganism a torque. Previous works investigated 'Ca. M. multicellularis' behavior when free swimming in water; however, they occur in sediments where bumping into solid particles must be routine. In this work, we investigate the swimming trajectories of 'Ca. M. multicellularis' close to solid boundaries using video microscopy. We applied magnetic fields 0.25-8.0 mT parallel to the optical axis of a light microscope, such that microorganisms were driven upwards towards a coverslip. Because their swimming trajectories approach cylindrical helixes, circular profiles would be expected. Nevertheless, at fields 0.25-1.1 mT, most trajectory projections were roughly sinusoidal, and net movements were approximately perpendicular to applied magnetic fields. Closed loops appeared in some trajectory projections at 1.1 mT, which could indicate a transition to the loopy profiles observed at magnetic fields ≥ 2.15 mT. The behavior of 'Ca. M. multicellularis' near natural magnetic grains showed that they were temporarily trapped by the particle's magnetic field but could reverse the direction of movement to flee away. Our results show that interactions of 'Ca. M. multicellularis with solid boundaries and magnetic grains are complex and possibly involve mechano-taxis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-021-01649-wDOI Listing

Publication Analysis

Top Keywords

solid boundaries
12
magnetic grains
12
magnetic fields
12
'ca multicellularis'
12
magnetic
11
'candidatus magnetoglobus
8
magnetoglobus multicellularis'
8
natural magnetic
8
magnetic field
8
swimming trajectories
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!