Background: Protoplasts (i.e., naked plant cells) can be used for in vitro manipulations and genetic improvement in cultivars with economic value. During the last decade, protoplast research in economic brown algae has been scarce, and it is usually hampered by the use of non-commercial enzymes or crude extracts for isolating protoplasts. Dictyopteris pacifica is part of a brown algal genus well known by its wide chemical diversity and biological properties. Scytosiphon lomentaria is an edible brown seaweed with antioxidant, antitumor, and antiviral properties. So far, there are no protoplast isolation protocols using commercial enzymes for these two economic brown algae. In this study, we obtained protoplasts from cultured samples of D. pacifica and S. lomentaria using commercially available enzymes. Additionally, we investigated the effects of Driselase inclusion and Ca-chelation pre-treatment on protoplast yields in order to optimize the conditions for protoplast preparations.

Results: Protoplasts were isolated from Dictyopteris pacifica and Scytosiphon lomentaria using the commercially available Cellulase Onozuka RS (1%) and Alginate lyase (4 U mL), and short incubation time (4 h). Driselase did not show significant effects on protoplast production in both species. Ca-chelation pre-treatment only increased the number of protoplasts in D. pacifica. Under optimal conditions, the protoplast yields from D. pacifica and S. lomentaria were 4.83 ± 2.08 and 74.64 ± 32.49 × 10 protoplasts g fresh weight, respectively. The values obtained for S. lomentaria were 2-3 orders of magnitude higher than previously reported.

Conclusions: Our results show that high protoplast yields can be obtained from D. pacifica and S. lomentaria using a simple mixture of commercial enzymes (Cellulase RS and Alginate lyase) and short incubation time (4 h). This work also represents the first report of protoplast isolation in D. pacifica. The method proposed here can help to expand protoplast technology in more brown algal species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417188PMC
http://dx.doi.org/10.1186/s43141-021-00226-yDOI Listing

Publication Analysis

Top Keywords

protoplast isolation
12
dictyopteris pacifica
12
scytosiphon lomentaria
12
pacifica lomentaria
12
protoplast yields
12
protoplast
10
pacifica
8
pacifica scytosiphon
8
lomentaria simple
8
economic brown
8

Similar Publications

V6 encoded by mulberry crinkle leaf virus is important for viral DNA replication.

Virology

January 2025

School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212100, China. Electronic address:

Mulberry crinkle leaf virus (MCLV) is a representative species of the genus Mulcrilevirus in the family Geminiviridae. Here, we identified an additional V6 ORF which embedded within the V4 ORF in the MCLV virion-sense strand. The expression of V6 was confirmed by analyzing the promoter activity of V6 ORF upstream sequences and quantifying the viral DNA accumulation in V6-mutant MCLV-infected tomato plants.

View Article and Find Full Text PDF

Sugarcane smut caused by is a global sugarcane disease, and studying its molecular pathogenesis is crucial for discovering new prevention and control targets. This study was based on the transcriptome sequencing data of two isolates with different pathogenicities ( and ) of the and screened out a gene encoding the Major Facility Superfamily (MFS) sugar transporter protein and named it . Knockout mutants ( and ) and complementary mutants ( and ) were obtained through polyethylene glycol (PEG)-mediated protoplast transformation technology.

View Article and Find Full Text PDF

Trans-nuclei CRISPR/Cas9: safe approach for genome editing in the edible mushroom excluding foreign DNA sequences.

Appl Microbiol Biotechnol

December 2024

Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kitashirakawaoiwakecho, Kyoto, 606-8502, Japan.

Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted genome editing has been applied to several major edible agaricomycetes, enabling efficient gene targeting. This method is promising for rapid and efficient breeding to isolate high-value cultivars and overcome cultivation challenges. However, the integration of foreign DNA fragments during this process raises concerns regarding genetically modified organisms (GMOs) and their regulatory restrictions.

View Article and Find Full Text PDF

Development of an optimized protocol for protoplast-to-plant regeneration of selected varieties of Brassica oleracea L.

BMC Plant Biol

December 2024

Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculturein Krakow, Mickiewicza 21, Krakow, 31-120, Poland.

Background: Brassica oleracea L. is a key plant in the Brassicaceae family, known for popular vegetables like cabbage, broccoli, kale and collard. Collard (B.

View Article and Find Full Text PDF

Strategies and Protocols for Optimized Genome Editing in Potato.

CRISPR J

December 2024

Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.

The potato family includes a highly diverse cultivar repertoire and has a high potential for nutritional yield improvement and refinement but must in line with other crops be adapted to biotic and abiotic stresses, for example, accelerated by climate change and environmental demands. The combination of pluripotency, high ploidy, and relative ease of protoplast isolation, transformation, and regeneration together with clonal propagation through tubers makes potato highly suitable for precise genetic engineering. Most potato varieties are tetraploid having a very high prevalence of length polymorphisms and small nucleotide polymorphisms between alleles, often complicating CRISPR-Cas editing designs and strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!