A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Symmetry breaking-induced double-strand helices in H-bonded coassembly. | LitMetric

Symmetry breaking-induced double-strand helices in H-bonded coassembly.

Nanoscale

Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.

Published: August 2021

Double-strand helical structures are important in information storage of biomacromolecules, while the artificial synthesis depends on chirality transfer from the molecular to supramolecular scale, and the synthesis through symmetry breaking has yet been accomplished. In this work, we present the multiple-constituent coassembly of a melamine derivative and an N-terminal aromatic amino acid into double helical nanoarchitectures via symmetry breaking. Multiple intramolecular H-bond formation between constituents played key roles in directing the formation of helical structures. Intertwining of single helices with identical helical parameters afforded double helical structures, benefiting from the uniformity and monodispersity of nanoarchitectures. With introduction of coded chiral amino acid derivatives as chiral sources, the handedness could be readily manipulated with exclusive correlation to the absolute chirality of amino acids. Molecular flexibility of the melamine derivative facilitates the propeller-shaped complex formation to afford helical columnar coassemblies and double helical structures. This work presents a rational control over the emergence and properties of double helical structures in multiple-constituent coassemblies through symmetry breaking, which provides an alternative method towards the synthesis of topological chiral composites and chiroptical materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr02515eDOI Listing

Publication Analysis

Top Keywords

helical structures
20
double helical
16
symmetry breaking
12
helical
8
melamine derivative
8
amino acid
8
structures
5
symmetry
4
symmetry breaking-induced
4
breaking-induced double-strand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!