MXenes have received much attention as promising candidates for noble metal-free hydrogen evolution reaction (HER) electrocatalysts due to their high electrical conductivity, surface hydrophilicity, abundant surface functional groups, and great potential for rational hybridization with other materials. Herein, a novel porous monolayered-TiCT@NiCoP (P-TiCT@NiCoP) nanostructure was synthesized with uniform distribution of bimetallic compounds for improved charge transfer capability and electrocatalytic activity. In experiments, HO-utilized oxidation formed a highly mesoporous structure with a maximized surface area of monolayered MXenes as the support. A subsequent solvothermal process followed by phosphidation enabled successful anchoring of highly HER-active NiCoP nanoclusters onto abundantly exposed terminal edges of the P-TiCT support. The structural porosity of the P-TiCT nanoflakes played an important role in creating additional room for embedding catalytically active species while stably imparting high electrical conductivity to accelerate charge transfer to NiCoP nanoclusters. With structural modification and effective hybridization, P-TiCT@NiCoP showed highly enhanced HER activity with significantly lower overpotentials of 115 and 101 mV at a current density of -10 mA cm in 0.5 M HSO and 1.0 M KOH, respectively, along with showing long-term stability over 60 h. As such, our approach of designing structurally modified-TiCT and hybridizing with other electrocatalytically active species would function as a solid platform for implementing TiCT-based hetero-nanostructures to achieve state-of-the-art performance in next-generation energy conversion applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1nr02601a | DOI Listing |
Molecules
January 2025
Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan.
Palladium-doped silver nanoclusters (NCs) have been highlighted for their unique physicochemical properties and potential applications in catalysis, optics, and electronics. Anion-directed synthesis offers a powerful route to control the morphology and properties of these NCs. Herein, we report a novel Pd-doped Ag NC, [Pd(H)Ag(S){SP(OPr)}] (), synthesized through the inclusion of sulfide and hydride anions.
View Article and Find Full Text PDFMolecules
January 2025
Department of Applied Chemistry, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Herein, a WO@TCN photocatalyst was successfully synthesized using a self-assembly method, which demonstrated effectiveness in degrading organic dyestuffs and photocatalytic evolution of H. The synergistic effect between WO and TCN, along with the porous structure of TCN, facilitated the formation of a heterojunction that promoted the absorption of visible light, accelerated the interfacial charge transfer, and inhibited the recombination of photogenerated electron-hole pairs. This led to excellent photocatalytic performance of 3%WO@TCN in degrading TC and catalyzing H evolution from water splitting under visible-light irradiation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Departamento de Química Orgánica, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea.
: Abiotic stresses such as salinity and drought significantly constrain crop cultivation and affect productivity. Quinoa ( Willd.), a facultative halophyte, exhibits remarkable tolerance to drought and salinity stresses, making it a valued model for understanding stress adaptation mechanisms.
View Article and Find Full Text PDFNano Converg
January 2025
School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Electrochemical water splitting, which encompasses the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers a promising route for sustainable hydrogen production. The development of efficient and cost-effective electrocatalysts is crucial for advancing this technology, especially given the reliance on expensive transition metals, such as Pt and Ir, in traditional catalysts. This review highlights recent advances in the design and optimization of electrocatalysts, focusing on density functional theory (DFT) as a key tool for understanding and improving catalytic performance in the HER and OER.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!