The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1nr02921e | DOI Listing |
Vestn Oftalmol
December 2024
Institute of Regenerative Medicine of the Sechenov University, Moscow, Russia.
Unlabelled: The scientific and practical interest in studying the biomechanical characteristics of the lens capsule, on the one hand, is associated with its anatomical significance in modern microinvasive phaco surgery, and on the other hand, with investigation of the mechanisms of lens curvature changes during accommodation. Selective study of the biomechanical properties of the lens capsule aims to identify characteristics of various regions and surfaces of the capsule.
Purpose: This study is a comparative analysis of age-related changes in the biomechanical properties of the anterior (AC) and posterior (PC) lens capsules in humans.
Sci Rep
December 2024
Department of Mathematics, Payame Noor University, Tehran, Iran.
In the realm of petroleum extraction, well productivity declines as reservoirs deplete, eventually reaching a point where continued extraction becomes economically unfeasible. To counteract this, artificial lift techniques are employed, with gas injection being a prevalent method. Ideally, unrestricted gas injection could maximize oil output.
View Article and Find Full Text PDFJ Mol Graph Model
December 2024
Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,11623, Saudi Arabia. Electronic address:
The work being presented now combines severe gradient boosting with Shapley values, a thriving merger within the field of explainable artificial intelligence. We also use a genetic algorithm to analyse the HDAC1 inhibitory activity of a broad pool of 1274 molecules experimentally reported for HDAC1 inhibition. We conduct this analysis to ascertain the HDAC1 inhibitory activity of these molecules.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 "James Bourchier" Blvd., 1164 Sofia, Bulgaria.
Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to investigate the processes of penetration and reorganization of PBCA nanoparticles when deposited in a phospholipid monolayer subphase.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Flexible Electronics (Future Technologies), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
Two-dimensional WSe nanosheets have received increasing attention due to their excellent optoelectronic properties. Solid precursors, such as WO and Se powders, have been extensively employed to grow WSe nanosheets by the chemical vapor deposition (CVD) method. However, the high melting point of WO results in heterogeneous nucleation sites and nonuniform growth of the WSe nanosheet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!