Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper reports the first experimental demonstration of a new concept of double magnetic tunnel junctions comprising a magnetically switchable assistance layer. These double junctions are used as memory cells in spin transfer torque magnetic random access memory (STT-MRAM) devices. Their working principle, fabrication and electrical characterization are described and their performances are compared to those of reference devices without an assistance layer. We show that thanks to the assistance layer, the figure of merit of STT-MRAM cells can be increased by a factor of 4 as compared to that of STT-MRAM based on conventional stacks without the assistance layer. A detailed discussion of the results is given supported by numerical simulations. The simulations also provide guidelines on how to optimize the properties of the assistance layer to get the full benefit from this concept.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1nr01656c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!