Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes. For each of the nanomaterials, the synthesis parameters were adjusted to obtain NCs in the size range from 8 up to 15 nm. The chemical and structural nature of the different NCs was correlated to their magnetic properties. In particular, to evaluate magnetic losses, we compared the data obtained from calorimetric measurements to the data measured by dynamic magnetic hysteresis obtained under alternating magnetic field (AMF) excitation. Cobalt-ferrite and zinc-cobalt ferrite NCs showed high specific adsorption rate (SAR) values in aqueous solutions but their heating ability was drastically suppressed once in viscous media even for NCs as small as 12 nm. On the other hand, non-stoichiometric zinc-ferrite NCs showed significant but lower SAR values than the other ferrites, but these zinc-ferrite NCs preserved almost unaltered their heating trend in viscous environments. Also, the presence of zinc in the crystal lattice of zinc-cobalt ferrite NCs showed increased contrast enhancement for MRI with the highest T relaxation time and in the MPI signal with the best point spread function and signal-to-noise ratio in comparison to the analogue cobalt-ferrite NC. Among the different compositions investigated, non-stoichiometric zinc-ferrite NCs can be considered the most promising material as a multifunctional theranostic platform for MHT, MPI and MRI regardless of the media viscosity in which they will be applied, while ensuring the best biocompatibility with respect to the cobalt ferrite NCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374679 | PMC |
http://dx.doi.org/10.1039/d1nr01044a | DOI Listing |
Environ Res
October 2024
Department of Environmental Science, Periyar University, Salem, 636011, Tamil Nadu, India. Electronic address:
In this study, we report the development of a novel CuO(3 wt%)/CoFeO nanocubes (NCs) photocatalyst through simple co-precipitation and wet impregnation methods for the efficient photocatalytic degradation of triclosan (TCS) pollutants. Initially, rod-shaped bare CoFeO was synthesized using a simple co-precipitation technique. Subsequently, CuO was loaded in various percentages (1, 2, and 3 wt%) onto the surface of bare CoFeO nanorods (NRs) via the wet impregnation method.
View Article and Find Full Text PDFACS Omega
May 2024
Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan.
In this study, pure nickel oxide (NiO), manganese ferrite (MnFeO or MFO), and binary nickel oxide/manganese ferrite (NiO/MFO1-4) nanocomposites (NCs) were synthesized using the Sol-Gel method. A comprehensive investigation into their photoluminescence, structural, morphological, magnetic, optical, and photocatalytic properties was conducted. Raman analysis, UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction techniques were used to characterize the materials.
View Article and Find Full Text PDFLuminescence
May 2024
Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
The ability of heterogeneous photocatalysis to effectively remove organic pollutants from wastewater has shown great promise as a tool for environmental remediation. Pure zinc ferrites (ZnFeO) and magnesium-doped zinc ferrites (Mg@ZnFeO) with variable percentages of Mg (0.5, 1, 3, 5, 7, and 9 mol%) were synthesized via hydrothermal route and their photocatalytic activity was checked against methylene blue (MB) taken as a model dye.
View Article and Find Full Text PDFSci Rep
April 2024
Department of Chemistry, Biochemistry Division, Faculty of Science, Menoufia University, Shibin El Kom, Menoufia, Egypt.
Zinc ferrite nanoparticles (ZnF NPs) were synthesized by a green method using Psidium guava Leaves extract and characterized via structural and optical properties. The surface of ZnF NPs was stabilized with citric acid (CA) by a direct addition method to obtain (ZnF-CA NPs), and then lipase (LP) enzyme was immobilized on ZnF-CA NPs to obtain a modified ZnF-CA-LP nanocomposite (NCs). The prepared sample's photocatalytic activity against Methylene blue dye (MB) was determined.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2023
Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 751 03, Sweden.
A set of non-stoichiometric Zn-Co-ferrite nanoparticles (NPs) was prepared by thermal decomposition of metallic complexes, in the presence of oleic acid, and, after a ligand-exchange process, was coated by a hydrophilic surfactant: these NPs were used as seeds in a sol-gel self-combustion synthesis to prepare nanocomposites (NCs) with a fixed weight ratio. Our focus here is the development of an efficient synthetic approach to control the magnetic coupling between a hard-magnetic matrix (Sr-ferrite) and NPs. The physico-chemical synthetic conditions (temperature, pH, colloidal stability) were optimized in order to tune their effect on the final particles' agglomeration in the matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!