Neuroprotective Role of the B Vitamins in the Modulation of the Central Glutamatergic Neurotransmission.

CNS Neurol Disord Drug Targets

Graduate Institute of Basic Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, Taiwan, China.

Published: March 2022

Background: Regulation of glutamate release is crucial for maintaining normal brain function, but excess glutamate release is implicated in many neuropathological conditions. Therefore, the minimum glutamate release from presynaptic nerve terminals is an important neuroprotective mechanism.

Objective: In this mini-review, we analyze the three B vitamins, namely vitamin B2 (riboflavin), vitamin B6 (pyridoxine), and vitamin B12 (cyanocobalamin), that affect the 4-aminopyridine (4- AP)-evoked glutamate release from presynaptic nerve terminal in rat and discuss their neuroprotective role.

Methods: In this study, the measurements include glutamate release, DiSC3(5), and Fura-2.

Results: The riboflavin, pyridoxine, and cyanocobalamin produced significant inhibitory effects on 4-aminopyridine-evoked glutamate release from rat cerebrocortical nerve terminals (synaptosomes) in a dose-dependent relationship. These presynaptic inhibitory actions of glutamate release are attributed to inhibition of physiologic Ca2+-dependent vesicular exocytosis but not Ca2+-independent nonvesicular release. These effects also did not affect membrane excitability, while diminished cytosolic (Ca2+)c through a reduction of direct Ca2+ influx Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, rather than through indirect Ca2+induced Ca2+ release from ryanodine-sensitive intracellular stores. Furthermore, their effects were attenuated by GF109203X and Ro318220, two protein kinase C (PKC) inhibitors, suggesting suppression of PKC activity. Taken together, these results suggest that riboflavin, pyridoxine, and cyanocobalamin inhibit presynaptic vesicular glutamate release from rat cerebrocortical synaptosomes, through the depression Ca2+ influx via voltage- dependent Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, and PKC signaling cascade.

Conclusion: Therefore, these B vitamins may reduce the strength of glutamatergic synaptic transmission and is of considerable importance as potential targets for therapeutic agents in glutamate- induced excitation-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871527320666210902165739DOI Listing

Publication Analysis

Top Keywords

glutamate release
32
release
10
glutamate
8
release presynaptic
8
presynaptic nerve
8
nerve terminals
8
riboflavin pyridoxine
8
pyridoxine cyanocobalamin
8
release rat
8
rat cerebrocortical
8

Similar Publications

Addiction comes in various forms and can be related to substances like cocaine, opioids, alcohol, cannabis, amphetamine, and nicotine, as well as behaviors like gambling or sex addiction. The impact of addiction places increased economic and medical burdens on society. Currently, the management of addiction is more focused on symptomatic relief rather than targeting the reinforcing mechanisms of dependence on addictive substances and behaviors.

View Article and Find Full Text PDF

The brain and spinal cord originate from a neural tube that is preceded by a flat structure known as the neural plate during early embryogenesis. In humans, failure of the neural plate to convert into a tube by the fourth week of pregnancy leads to neural tube defects (NTDs), birth defects with serious neurological consequences. The signaling mechanisms governing the process of neural tube morphogenesis are unclear.

View Article and Find Full Text PDF

Cysteine derivatives having disulfide bonds in their side chains can be used as redox-responsive organogelators. The disulfide bond can be cleaved in the presence of certain reducing agents like thiol derivatives such as glutathione (GSH), which is a tripeptide that consists of cysteine, glutamic acid, and glycine. Studies show that cells of certain cancers have higher levels of glutathione due to increased production of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Non-canonical Roles of Complement in the CNS: From Synaptic Organizer to Presynaptic Modulator of Glutamate Transmission.

Curr Neuropharmacol

January 2025

Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.

The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!