Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, the green synthesis of metallic nanoparticles (NPs) has received tremendous attention as a simple approach. The green pathway of biogenic synthesis of metallic NPs through microbes may provide a sustainable and environmentally friendly protocol. Green technology is the most innovative technology for various biological activities and lacks toxic effects. Reports have shown the algae-mediated synthesis of metal NPs. Algae are widely used for biosynthesis as they grow fast; they produce biomass on average ten times that of plants and are easily utilized experimentally. In the future, the production of metal NPs by different microalgae and their biological activity can be explored in diverse areas such as catalysis, medical diagnosis, and anti-biofilm applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1386207324666210903143832 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!