Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A long-standing mystery of fundamental importance in correlated electron physics is to understand strange non-Fermi liquid metals that are seen in diverse quantum materials. A striking experimental feature of these metals is a resistivity that is linear in temperature (T). In this Letter we ask what it takes to obtain such non-Fermi liquid physics down to zero temperature in a translation invariant metal. If in addition the full frequency (ω) dependent conductivity satisfies ω/T scaling, we argue that the T-linear resistivity must come from the intrinsic physics of the low energy fixed point. Combining with earlier arguments that compressible translation invariant metals are "ersatz Fermi liquids" with an infinite number of emergent conserved quantities, we obtain powerful and practical conclusions. We show that there is necessarily a diverging susceptibility for an operator that is odd under inversion and time reversal symmetries, and has zero crystal momentum. We discuss a few other experimental consequences of our arguments, as well as potential loopholes, which necessarily imply other exotic phenomena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.127.086601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!