Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The appearance of surface distortions on polymer melt extrudates, often referred to as sharkskin instability, is a long-standing problem. We report results of a simple physical model, which link the inception of surface defects with intense stretch of polymer chains and subsequent recoil at the region where the melt detaches from the solid wall of the die. The transition from smooth to wavy extrudate is attributed to a Hopf bifurcation, followed by a sequence of period doubling bifurcations, which eventually lead to elastic turbulence under creeping flow. The predicted flow profiles exhibit all the characteristics of the experimentally observed surface defects during polymer melt extrusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.127.088001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!