Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Azobenzene-embedded photoswitchable ligands are the widely used chemical tools in photopharmacological studies. Current approaches to azobenzene introduction rely mainly on the isosteric replacement of typical azologable groups. However, atypical scaffolds may offer more opportunities for photoswitch remodeling, which are chemically in an overwhelming majority. Herein, we investigate the rational remodeling of atypical scaffolds for azobenzene introduction, as exemplified in the development of photoswitchable ligands for the cannabinoid receptor 2 (CB2). Based on the analysis of residue-type clusters surrounding the binding pocket, we conclude that among the three representative atypical arms of the CB2 antagonist, AM10257, the adamantyl arm is the most appropriate for azobenzene remodeling. The optimizing spacer length and attachment position revealed with excellent thermal bistability, decent photopharmacological switchability between its two configurations, and high subtype selectivity. This structure-guided approach gave new impetus in the extension of new chemical spaces for tool customization for increasingly diversified photo-pharmacological studies and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.1c01088 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!