Extended Barrier Lifetime of Partially Cracked Organic/Inorganic Multilayers for Compliant Implantable Electronics.

Small

Laboratory for Processing of Advanced Composites, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.

Published: October 2021

Flexible and soft bioelectronics display conflicting demands on miniaturization, compliance, and reliability. Here, the authors investigate the design and performance of thin encapsulation multilayers against hermeticity and mechanical integrity. Partially cracked organic/inorganic multilayer coatings are demonstrated to display surprisingly year-long hermetic lifetime under demanding mechanical and environmental loading. The thin hermetic encapsulation is grown in a single process chamber as a continuous multilayer with dyads of atomic layer deposited (ALD) Al O -TiO and chemical vapor deposited Parylene C films with strong interlayer adhesion. Upon tensile loading, tortuous diffusion pathways defined along channel cracks in the ALD oxide films and through tough Parylene films efficiently postpone the hermeticity failure of the partially cracked coating. The authors assessed the coating performance against prolonged exposure to biomimetic physiological conditions using coated magnesium films, platinum interdigitated electrodes, and optoelectronic devices prepared on stretchable substrates. Designed extension of the lifetime preventing direct failures reduces from over 5 years yet tolerates the lifetime of 3 years even with the presence of critical damage, while others will directly fail less than two months at 37 °C. This strategy should accelerate progress on thin hermetic packaging for miniaturized and compliant implantable electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202103039DOI Listing

Publication Analysis

Top Keywords

partially cracked
12
cracked organic/inorganic
8
compliant implantable
8
implantable electronics
8
thin hermetic
8
parylene films
8
extended barrier
4
lifetime
4
barrier lifetime
4
lifetime partially
4

Similar Publications

Affirmative Action-A Crack in the Door to Higher Education.

Ann Fam Med

January 2025

Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas

The impact of the Supreme Court of the United States ruling against race-conscious admissions extends beyond college admissions to professional schools. Based partially on the idea that enough time had elapsed for achievement of the stated goals of affirmative action, the court ruled race-conscious admissions are unconstitutional under the 14th Amendment's Equal Protection Clause. The ruling left a crack in the door to higher education, however, allowing students to write an essay showing how race or ethnicity affected their lives.

View Article and Find Full Text PDF

Molecular mechanism of protein-lipid interactions in steamed egg gelation and deterioration: A quantitative proteomic study.

Int J Biol Macromol

January 2025

Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China. Electronic address:

Steamed egg (SE), a traditional egg dish, exhibits steaming time-dependent textural properties. This study investigated the molecular mechanisms underlying SE gel formation and deterioration through quantitative proteomics combined with physicochemical characterization. Results showed optimal gel formation at 11 min steaming, while prolonged steaming (23 min) led to gel cracking and sensory deterioration.

View Article and Find Full Text PDF

Investigation of Crack Propagation in Locally Thermal-Treated Cast Iron.

Materials (Basel)

January 2025

Department of Transport Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, 44249 Kaunas, Lithuania.

Cyclic failure problems in layered ductile iron are evident in a wide range of elements in transportation and mining equipment and depend on production technology and operating conditions. The aim of this study was to analyze the effect of residual stresses on the behavior of cyclic and static failure. The stress intensity factor, crack initiation, propagation patterns, static tension diagrams, and fracture behavior of compact tension (CT) specimens were determined.

View Article and Find Full Text PDF

Friction stir spot welding (FSSW) technology relies on the generation of frictional heat during the rotation of the welding tool in contact with the workpiece as well as the stirring effect of the tool pin to produce solid-state spot joints, especially for lightweight materials. Although FSSW offers significant advantages over traditional fusion welding, the oxidation of the interfacial bond line remains one of the most challenging issues, affecting the quality and strength of the joint under both static and cyclic loading conditions. In this experimental study, inert argon gas was employed to surround the joint, aiming to prevent or minimize the formation of the interfacial oxides.

View Article and Find Full Text PDF

When long-span beams undergo large, the strength of the beam material cannot be fully utilized. To solve this problem, a prestressed unequal-walled rectangular concrete-filled steel box (PURCFSB) beam is proposed in this paper. The prestressing is added to the concrete-filled steel tubular (CFST) beam and the section is designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!