A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Driver drowsiness detection using facial thermal imaging in a driving simulator. | LitMetric

Driver drowsiness causes fatal driving accidents. Thermal imaging is a suitable drowsiness detection method as it is non-invasive and robust against changes in the ambient light. In this paper, driver drowsiness is detected by measuring the forehead temperature at the region covering the supratrochlear artery and also the cheek temperature. About 30 subjects drove on a highway in a driving simulator in two sessions. A thermal camera was used to monitor the facial temperature pattern. The subjects' drowsiness levels were estimated by three human observers. The forehead and the cheek regions were located and tracked in each frame. The forehead and the cheek skin temperatures were obtained at three levels of drowsiness. The Support Vector Machine, the K-Nearest Neighbor, and the regression tree classifiers were used. From wakefulness to extreme drowsiness, the forehead skin temperature and the absolute cheek-forehead skin temperature gradient decreased by 0.46°C and 0.81°C, respectively. But the cheek skin temperature increased by 0.35°C in two sessions. The gradient difference is on average 50% higher than the forehead or the cheek temperature change alone. The results indicate that drowsiness can be detected with an accuracy of 82%, sensitivity of 85%, specificity of 90%, and precision of 84%. Driver drowsiness can be detected by monitoring changes in the forehead and the cheek temperature signal. Also, the temperature gradient can be used as a more robust and sensitive indicator of drowsiness.

Download full-text PDF

Source
http://dx.doi.org/10.1177/09544119211044232DOI Listing

Publication Analysis

Top Keywords

driver drowsiness
16
forehead cheek
16
drowsiness detected
12
cheek temperature
12
skin temperature
12
drowsiness
9
temperature
9
drowsiness detection
8
thermal imaging
8
driving simulator
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!