Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Improved spatial awareness is vital in anatomy education as well as in many areas of medical practice. Many healthcare professionals struggle with the extrapolation of 2D data to its locus within the 3D volume of the anatomy. In this chapter, we outline the use of touch as an important sensory modality in the observation of 3D forms, including anatomical parts, with the specific neuroscientific underpinnings in this regard being described. We explore how improved spatial awareness is directly linked to improved spatial skill. The reader is offered two practical exercises that lead to improved spatial awareness for application in exploring external 3D anatomy volume as well as internal 3D anatomy volume. These exercises are derived from the Haptico-visual observation and drawing (HVOD) method. The resulting cognitive improvement in spatial awareness that these exercises engender can be of benefit to students in their study of anatomy and for application by healthcare professionals in many aspects of their medical practice. The use of autostereoscopic visualisation technology (AS3D) to view the anatomy from DICOM data, in combination with the haptic exploration of a 3D print (3Dp) of the same stereoscopic on-screen image, is recommended as a practice for improved understanding of any anatomical part or feature. We describe a surgical innovation that relies on the haptic perception of patients' 3D printed (3Dp) anatomical features from patient DICOM data, for improved surgical planning and in-theatre surgical performance. Throughout the chapter, underlying neuroscientific correlates to haptic and visual observation, memory, working memory, and cognitive load are provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-030-76951-2_2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!