Recent studies concluded that air quality has improved due to the enforcement of lockdown in the wake of COVID-19. However, they mostly concentrated on the changes during the lockdown period, and the studies considering the consequences of de-escalation of lockdown are inadequate. Therefore, we investigated the changes in fine particulate matter (PM) during the pre-lockdown, strict lockdown, unlocking, and post-lockdown scenarios. In addition, we assessed the influence of meteorology, mobility, air mass transport, and biomass burning on PM using Google's mobility data, back trajectory model, and satellite-based fire incident data. Average PM concentrations in Ghaziabad, Noida, and Faridabad decreased by 60.70%, 63.27%, and 60.40%, respectively, during the lockdown. When compared with the preceding year (2019), the reductions during the shutdown period (25 March-31 May) were within the range of 36.34-44.55%. However, considering the entire year, this reduction in PM is momentary, and a steady increase in traffic density and industrial operations within cities during post-lockdown reflects a potent recovery of aerosol level, during which the average mass of PM three- to four-folds higher than the lockdown period. Back trajectories and fire activity results showed that biomass burning in the nearby states (Haryana and Punjab) influence aerosol load. We conclude that a partial lockdown in the event of a sudden surge in pollution would be a beneficial approach. However, reducing fossil fuel consumption and switching to more environmentally friendly energy sources, developing green transport networks, and circumventing biomass burning are efficient ways to improve air quality in the long term.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412385 | PMC |
http://dx.doi.org/10.1007/s10661-021-09400-8 | DOI Listing |
Metabolism
January 2025
Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China. Electronic address:
The nonenergy-producing or biomass-accumulating functions of metabolism are attracting increasing attention, as metabolic changes are gaining importance as discrete signaling pathways in modulating enzyme activity and gene expression. Substantial evidence suggests that myocardial metabolic remodeling occurring during diabetic cardiomyopathy, heart failure, and cardiac pathological stress (e.g.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2025
Environmental Epidemiology Team, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency (UKHSA), Didcot OX11 0RQ, UK.
Carbon monoxide (CO) is a toxic gas, and faulty gas appliances or solid fuel burning with incomplete combustion are possible CO sources in households. Evaluating household CO exposure models and measurement studies is key to understanding where CO exposures may result in adverse health outcomes. This assists the assessment of the burden of disease in high- and middle-income countries and informs public health interventions in higher-risk environments.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
Particulate matter (PM), particularly fine (PM) and ultrafine (PM) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Air Methods and Characterization Division, U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States.
This study examines three representative semigasifier cookstove models each burning four types of pelletized-biomass fuel (hardwood, peanut hull, rice husk, and wheat straw) using the International Organization for Standardization (ISO) 19867-1:2018 protocol. ISO tier ratings for fine particulate matter (PM) and carbon monoxide (CO) emissions ranged 1-4 and 2-5 (where 5 = cleanest), respectively, suggesting that pellet-fueled cookstoves may provide substantial emissions reductions, dependent upon stove/fuel matching and operation, over other biomass-fueled cooking alternatives. PM emission factors based on useful energy delivered (EF) varied by up to 25-fold, and organic and elemental carbon (OC and EC) EF values respectively varied by >200- and ∼100-fold, reflecting complex variability in PM composition.
View Article and Find Full Text PDFSci Total Environ
February 2025
Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain. Electronic address:
Airborne quasi-ultrafine particle samples were collected from different outdoor sites in Barcelona (NE Spain, 35 samples) and the Valencia subway (about 400 km south of Barcelona, 3 samples). Locations and schedules were designed to cover cold and warm seasons and to represent the impact of different types of transport (cars, trains, ships, and planes). Extracts from PTFE filters (methanol:dichloromethane 1:2) were used to test toxic effects in human cell lines (Induction of reactive oxygen species, inflammatory response) and in zebrafish embryos (expression of xenobiotic response-related genes, cyp1a1, gsa1 and hao1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!