Purpose: This study aimed at exploring the effect of berberine (C20H18NO4) on osteogenic differentiation of rat adipose-derived stem cells(ADSCs) and clarifying the related mechanism.
Methods: ADSCs were subjected to 5, 10, 20 μmol/L berberine culture solution. The untreated ADSCs were set as the control group. Cell proliferation activity was determined by MTT method. Alkaline phosphatase (ALP) staining, semi-quantitative assay and alizarin red staining (ARS) were applied to analyze the effect of berberine on osteogenic differentiation of ADSCs. The phosphorylation level of c-Jun amino terminal kinase (JNK) protein was tested by Western blot. Runx2, OCN were tested by Western blot before and after application of JNK pathway inhibitor SP600125. SPSS 22.0 software package was used for statistical analysis.
Results: There was no significant difference on cell proliferation activity of ADSCs treated with 5, 10 and 20 μmol/L berberine at 1, 3 and 7 day(P>0.05). ALP staining and ARS staining in groups treated by berberine were significantly darker than those of the control group, and ALP protein secretion in the experimental group was significantly up-regulated (P<0.05). The phosphorylation level of JNK was increased after treated with 10 μmol/L berberine culture medium. The expression of osteogenic related proteins Runx2 and OCN was up-regulated in the experimental group. After inhibition of JNK signaling pathway, the expression of Runx2 and OCN was down-regulated.
Conclusions: Berberine has no effect on cell proliferation of ADSCs, and can up-regulate osteogenic differentiation of ADSCs through activation of JNK signaling pathway.
Download full-text PDF |
Source |
---|
Front Bioeng Biotechnol
January 2025
Department of Sports Medicine, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine (FJTCM), Fuzhou, China.
Humerus greater tuberosity (HGT) avulsion fracture is one of the most common types of proximal humerus fractures. The presence of motion and gap lead to the failure of implants, due to the force pulling from the supraspinatus. In this work, electrospinning technology was applied to fabricate PCL-PEG/CS/AST nanofiber with superior biocompatibility and mechanical property.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia 27100, Italy.
The present article reviews the emerging role of melatonin (MT) and the Hippo-Yes-associated protein signaling pathway in periodontal regeneration, highlighting their potential to delay the aging process of periodontal ligament stem cells (PDLSCs). Oxidative stress and cellular senescence are major obstacles in regenerative therapies, especially in an aging population. MT, a potent antioxidant, restores the morphology, proliferation, and osteogenic differentiation potential of PDLSCs under oxidative stress conditions.
View Article and Find Full Text PDFNuclear morphology, which modulates chromatin architecture, plays a critical role in regulating gene expression and cell functions. While most research has focused on the direct effects of nuclear morphology on cell fate, its impact on the cell secretome and surrounding cells remains largely unexplored, yet is especially crucial for cell-based therapies. In this study, we fabricated implants with a micropillar topography using methacrylated poly(octamethylene citrate)/hydroxyapatite (mPOC/HA) composites to investigate how micropillar-induced nuclear deformation influences cell paracrine signaling for osteogenesis and cranial bone regeneration.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
Osteomyelitis has gradually become a catastrophic complication in orthopedic surgery due to the formation of bacterial biofilms on the implant surface and surrounding tissue. The therapeutic challenges of antibiotic resistance and poor postoperative osseointegration provide inspiration for the development of bioactive implants. We have strategically designed bioceramic scaffolds modified with (LR) and bacteriophages (phages) to achieve both antibacterial and osteogenic effects.
View Article and Find Full Text PDFMater Today Bio
February 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!