The ability to tune the behavior of temperature-responsive polymers and self-assembled nanostructures has attracted significant interest in recent years, particularly in regard to their use in biotechnological applications. Herein, well-defined poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA)-based core-shell particles were prepared by RAFT-mediated emulsion polymerization, which displayed a lower-critical solution temperature (LCST) phase transition in aqueous media. The tertiary amine groups of PDEAEMA units were then utilized as functional handles to modify the core-forming block chemistry via a postpolymerization betainization approach for tuning both the cloud-point temperature ( ) and flocculation temperature ( ) of these particles. In particular, four different sulfonate salts were explored aiming to investigate the effect of the carbon chain length and the presence of hydroxyl functionalities alongside the carbon spacer on the particle's thermoresponsiveness. In all cases, it was possible to regulate both and of these nanoparticles upon varying the degree of betainization. Although was found to be dependent on the type of betainization reagent utilized, it only significantly increased for particles betainized using sodium 3-chloro-2-hydroxy-1-propanesulfonate, while varying the aliphatic chain length of the sulfobetaine only provided limited temperature variation. In comparison, the onset of flocculation for betainized particles varied over a much broader temperature range when varying the degree of betainization with no real correlation identified between and the sulfobetaine structure. Moreover, experimental results were shown to partially correlate to computational oligomer hydrophobicity calculations. Overall, the innovative postpolymerization betainization approach utilizing various sulfonate salts reported herein provides a straightforward methodology for modifying the thermoresponsive behavior of soft polymeric particles with potential applications in drug delivery, sensing, and oil/lubricant viscosity modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389998PMC
http://dx.doi.org/10.1021/acspolymersau.1c00010DOI Listing

Publication Analysis

Top Keywords

postpolymerization betainization
12
betainization approach
12
tuning cloud-point
8
flocculation temperature
8
sulfonate salts
8
chain length
8
varying degree
8
degree betainization
8
temperature
6
betainization
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!