Network Thermodynamical Modeling of Bioelectrical Systems: A Bond Graph Approach.

Bioelectricity

Systems Biology Laboratory, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia.

Published: March 2021

Interactions among biomolecules, electrons, and protons are essential to many fundamental processes sustaining life. It is therefore of interest to build mathematical models of these bioelectrical processes not only to enhance understanding but also to enable computer models to complement and experiments. Such models can never be entirely accurate; it is nevertheless important that the models are compatible with physical principles. Network Thermodynamics, as implemented with bond graphs, provide one approach to creating physically compatible mathematical models of bioelectrical systems. This is illustrated using simple models of ion channels, redox reactions, proton pumps, and electrogenic membrane transporters thus demonstrating that the approach can be used to build mathematical and computer models of a wide range of bioelectrical systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396112PMC
http://dx.doi.org/10.1089/bioe.2020.0042DOI Listing

Publication Analysis

Top Keywords

bioelectrical systems
12
build mathematical
8
mathematical models
8
models bioelectrical
8
computer models
8
models
7
network thermodynamical
4
thermodynamical modeling
4
bioelectrical
4
modeling bioelectrical
4

Similar Publications

On Oscillations in the External Electrical Potential of Sea Urchins.

ACS Omega

January 2025

Unconventional Computing Laboratory, University of the West of England, Coldharbour Ln, Stoke Gifford, Bristol BS16 1QY, U.K.

Sea urchins display complex bioelectric activity patterns, even with their decentralized nervous system. Electrophysiological recordings showed distinct spiking patterns. The baseline potential was about 8.

View Article and Find Full Text PDF

Lock-in amplifiers (LIAs) are critical tools in precision measurement, particularly for applications involving weak signals obscured by noise. Advances in signal processing algorithms and hardware synthesis have enabled accurate signal extraction, even in extremely noisy environments, making LIAs indispensable in sensor applications for healthcare, industry, and other services. For instance, the electrical impedance measurement of the human body, organs, tissues, and cells, known as bioelectrical impedance, is commonly used in biomedical and healthcare applications because it is non-invasive and relatively inexpensive.

View Article and Find Full Text PDF

Application of Additive Manufacturing and Deep Learning in Exercise State Discrimination.

Sensors (Basel)

January 2025

Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.

With the rapid development of sports technology, smart wearable devices play a crucial role in athletic training and health management. Sports fatigue is a key factor affecting athletic performance. Using smart wearable devices to detect the onset of fatigue can optimize training, prevent excessive fatigue and resultant injury, and increase efficiency and safety.

View Article and Find Full Text PDF

Heart rate variability biofeedback (HRV BF) training aids adaptation to new climatic, geographical, and social environments. Neurophysiological changes during the HRV BF in individuals from tropical regions studying in the Arctic are not well understood. The aim of this study was to research electroencephalographic (EEG) changes during a single short-term HRV BF session in Indian and Russian students studying in the Russian Arctic.

View Article and Find Full Text PDF

Reduce electrical overload via threaded Chinese acupuncture in nerve electrical therapy.

Bioact Mater

April 2025

Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.

Bioelectrical stimulation is a powerful technique used to promote tissue regeneration, but it can be hindered by an "electrical overload" phenomenon in the core region of stimulation. We develop a threaded microneedle electrode system that protects against "electrical overload" by delivering medicinal hydrogel microspheres into the core regions. The threaded needle body is coated with polydopamine and chitosan to enhance the adhesion of microspheres, which are loaded into the threaded grooves, allowing for their stereoscopic release in the core regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!