Roles of bioelectrical signals are increasingly recognized in excitable and nonexcitable non-neural tissues. Diverse ion-selective channels, pumps, and gap junctions participate in bioelectrical signaling, including those transporting calcium ions (Ca). Ca is the most versatile transported ion, because it serves as an electrical charge carrier and a biochemical regulator for multiple molecular binding, enzyme, and transcription activities. We aspire to learn how bioelectrical signals crosstalk to biochemical/biomechanical signals. In this study, we review four recent studies showing how bioelectrical currents and Ca signaling affect collective dermal cell migration during feather bud elongation, affect chondrogenic differentiation in limb development, couple with mechanical tension in aligning gut smooth muscle, and affect mitochondrial function and skeletal muscle atrophy. We observe bioelectrical signals involved in several developmental and pathological conditions in chickens and mice at multiple spatial scales: cellular, cellular collective, and subcellular. These examples inspire novel concept and approaches for future basic and translational studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370337PMC
http://dx.doi.org/10.1089/bioe.2020.0001DOI Listing

Publication Analysis

Top Keywords

bioelectrical signals
12
bioelectrical currents
8
currents signaling
8
bioelectrical
5
integrating bioelectrical
4
signaling
4
signaling biochemical
4
biochemical signaling
4
signaling development
4
development pathogenesis
4

Similar Publications

The journey of bone repair is a lengthy process. Traditionally, oral or topical medications have been employed to facilitate healing, approaches that are not only costly but may also lead to adverse effects such as gastrointestinal damage. With advancements in electrophysiology, the significance of bioelectric activity in tissue repair has become increasingly prominent, thereby enhancing the focus on research into electroacupuncture (EA) for bone repair.

View Article and Find Full Text PDF

Senescent bone tissue displays a pathological imbalance characterized by decreased angiogenesis, disrupted bioelectric signaling, ion dysregulation, and reduced stem cell differentiation. Once bone defects occur, this pathological imbalance makes them difficult to repair. An innovative synergistic therapeutic strategy is utilized to reverse these pathological imbalances via a conductive hydrogel doped with magnesium ion (Mg)-modified black phosphorus (BP).

View Article and Find Full Text PDF

Exogenous electron generation techniques for biomedical applications: Bridging fundamentals and clinical practice.

Biomaterials

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China. Electronic address:

Article Synopsis
  • Endogenous bioelectrical signals are vital for biological development, influencing regeneration and disease processes.
  • Exogenous stimulation mimics these signals and shows promise for modulating biological functions, leading to increased research on methods to generate exogenous electrons using various principles like piezoelectric and thermoelectric techniques.
  • This review aims to provide a thorough comparison of these electron-generation methods, their biological implications, and potential clinical applications, helping to guide future medical device innovations.
View Article and Find Full Text PDF

Modeling Optical Coherence Tomography (OCT) images is crucial for numerous image processing applications and aids ophthalmologists in the early detection of macular abnormalities. Sparse representation-based models, particularly dictionary learning (DL), play a pivotal role in image modeling. Traditional DL methods often transform higher-order tensors into vectors and then aggregate them into a matrix, which overlooks the inherent multi-dimensional structure of the data.

View Article and Find Full Text PDF

Electroencephalogram (EEG) signals are important bioelectrical signals widely used in brain activity studies, cognitive mechanism research, and the diagnosis and treatment of neurological disorders. However, EEG signals are often influenced by various physiological artifacts, which can significantly affect data analysis and diagnosis. Recently, deep learning-based EEG denoising methods have exhibited unique advantages over traditional methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!