Lung cancer is the most frequent malignant tumor, and non-small cell lung cancer (NSCLC) is responsible for substantial mortality worldwide. The small molecule SNX-2112 was recently shown to critically effect the proliferation and apoptosis of tumor cells. Nevertheless, the precise mechanism by which SNX-2112 affects NSCLC remains poorly understood. Therefore, we investigated the function of SNX-2112 in NSCLC. We verified that SNX-2112 promoted apoptosis and suppressed the proliferation, invasion, and migration of A549 and H520 NSCLC cells . We further verified the potential mechanism of SNX-2112 in NSCLC. The changes in the protein levels demonstrated that SNX-2112 inhibited the epithelial-mesenchymal transition (EMT) (increased E-cadherin and decreased N-cadherin and vimentin) and the Wnt/β-catenin signaling pathway (glycogen synthase kinase (GSK) 3β and phosphorylated (p)-β-catenin increased, β-catenin and p-GSK3β decreased) in NSCLC cells. These results were verified by rescue experiments using a Wnt/β-catenin pathway agonist. We also established a tumor xenograft model and confirmed that SNX-2112 reduced tumor growth and proliferation and enhanced necrosis and apoptosis in a NSCLC model . In conclusion, the current study is the first to discover the mechanism of SNX-2112 in NSCLC. SNX-2112 induced apoptosis and also inhibited the proliferation, invasion, and migration of NSCLC cells by downregulating EMT via the Wnt/β-catenin signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408115PMC
http://dx.doi.org/10.7150/jca.56640DOI Listing

Publication Analysis

Top Keywords

snx-2112 nsclc
16
proliferation invasion
12
invasion migration
12
lung cancer
12
wnt/β-catenin signaling
12
signaling pathway
12
mechanism snx-2112
12
nsclc cells
12
snx-2112
10
nsclc
9

Similar Publications

Lung cancer is the most frequent malignant tumor, and non-small cell lung cancer (NSCLC) is responsible for substantial mortality worldwide. The small molecule SNX-2112 was recently shown to critically effect the proliferation and apoptosis of tumor cells. Nevertheless, the precise mechanism by which SNX-2112 affects NSCLC remains poorly understood.

View Article and Find Full Text PDF

Complex Crystal Structure Determination and Anti-non-small Cell Lung Cancer Activity of Hsp90 Inhibitor SNX-2112.

Front Cell Dev Biol

March 2021

Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, China.

SNX-2112, as a promising anticancer lead compound targeting heat shock protein 90 (Hsp90), absence of complex crystal structure of Hsp90 -SNX-2112 hindered further structural optimization and understanding on molecular interaction mechanism. Herein, a high-resolution complex crystal structure of Hsp90 -SNX-2112 was successfully determined by X-ray diffraction, resolution limit, 2.14 Å, PDB ID 6LTK, and their molecular interaction was analyzed in detail, which suggested that SNX-2112 was well accommodated in the ATP-binding pocket to disable molecular chaperone activity of Hsp90, therefore exhibiting favorable inhibiting activity on three non-small cell lung cancer (NSCLC) cell lines (IC, 0.

View Article and Find Full Text PDF

Inhibition of Hsp90 has emerged as a therapeutic strategy to target NSCLC subtypes, which are refractory to epidermal growth factor receptor (EGFR) inhibitor-based treatment. We report on a novel small molecule inhibitor of Hsp90, SNX-2112, and an orally bioavailable prodrug analog, SNX-5422. In cellular models of wild-type or mutant EGFR (L858R and T790M mutations), SNX-2112 alone and in combination with erlotinib inhibited EGF activation of pAKT(473) and pSTAT3(705).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!