Polycystic Ovarian Syndrome roots needs to be rooted out at the outset: Will early screening help?

Pak J Med Sci

Dr. Uzma Urooj Consultant Gynecologist, PNS HAFEEZ Hospital, Islamabad, Pakistan.

Published: January 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377891PMC
http://dx.doi.org/10.12669/pjms.37.5.4509DOI Listing

Publication Analysis

Top Keywords

polycystic ovarian
4
ovarian syndrome
4
syndrome roots
4
roots rooted
4
rooted outset
4
outset will
4
will early
4
early screening
4
screening help?
4
polycystic
1

Similar Publications

Myo-inositol plays a vital role in human health, functioning as a second messenger of FSH and facilitating the transport of glucose into the cell. Consequently, myo-inositol is regularly utilized in the treatment of polycystic ovary syndrome (PCOS), wherein it acts upon metabolic factors, improving insulin sensitivity and reducing total androgen levels. Patients with PCOS frequently suffer from infertility; thus, the use of myo-inositol has been explored in improving assistive reproductive technique (ART) procedures.

View Article and Find Full Text PDF

Metabolic syndrome is a metabolic disorder characterized by hypertension, dyslipidemia, impaired glucose tolerance, and abdominal obesity. Impaired insulin action or insulin resistance initiates metabolic syndrome. The prevalence of insulin resistance is increasing all over the world.

View Article and Find Full Text PDF

Inflammation disrupts the normal function of granulosa cells (GCs), which leads to ovarian dysfunction and fertility decline. Inflammatory conditions such as polycystic ovary syndrome (PCOS), primary ovarian insufficiency (POI), endometriosis, and age-related ovarian decline are often associated with chronic low-grade inflammation. Nicotinamide mononucleotide (NMN) is an important precursor of NAD and has gained attention for its potential to modulate cellular metabolism, redox homeostasis, and mitigate inflammation.

View Article and Find Full Text PDF

Targeting UGT2B15 and NR1H4 interaction: a novel therapeutic strategy for polycystic ovary syndrome using naftopidil enantiomers.

J Ovarian Res

January 2025

Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.

Background: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder among women of reproductive age. It is characterized by hyperandrogenism, ovulatory dysfunction, and the presence of polycystic ovarian morphology (PCOM) on ultrasound, often accompanied by metabolic disturbances such as insulin resistance and obesity. Current treatments, including oral contraceptives and anti-androgen medications, often yield limited efficacy and undesirable side effects.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a common cause of infertility in women, characterized by metabolic and hormonal irregularities. We investigated the effects of placenta-derived mesenchymal stem cells (PDMSCs) and platelet-rich plasma (PRP), as well as their combination on follicular development, hormonal profile, inflammatory parameters, and insulin resistance in a model of PCOS. In this study, 25 female Wistar rats were randomly allocated into five groups: Sham (given a dose of 1 mL of a 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!